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Abstract
Ensembles are often expensive to evaluate since
they require running multiple models—each of
which is costly in the case of neural networks.
Using ensembles in compute-constrained applica-
tions would be much more practical if just a sub-
set of the models could be evaluated. We address
this issue with a novel product-of-experts-based
method for early-exit ensembling. We rely on the
fact that the product of finite-support probability
distributions (e.g., the continuous uniform) has
support less than or equal to that of the multipli-
cands. Thus, by setting a confidence threshold, we
can stop evaluating ensemble members once the
size of the support has been sufficiently reduced.
We demonstrate our methodology for both real-
value regression and multi-class classification.

1. Introduction
Predictive models are often subjected to dynamic constraints.
For example, an autonomous vehicle must make decisions
more quickly in an urban environment than in a rural one.
Thus we desire our models to have early-exit properties: the
model can be ‘short circuited’ and still produce a prediction
that is sufficiently close to the output produced by a full
execution. Ensuring and quantifying the early prediction to
be ‘sufficiently close’ is the core research challenge, as it is
hard to impose such strong constraints on today’s most pow-
erful predictive models (e.g., neural networks (NNs)). Deep
ensembles are one such powerful predictive model: M NNs
are trained in parallel, and at test time, the M predictions
are aggregated to produce a final output. Unfortunately, it
is difficult to use deep ensembles on low-resource devices
where it is demanding to evaluate one NN, let alone M
NNs. In this work, we propose a deep ensemble formu-
lation that allows for early-exit guarantees. Our primary
insight is to formulate the ensemble using two assumptions:
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Figure 1: Illustration of successive products of uniform
distributions showing the densities ( ) and means ( ) of
each product given the bounds of the multiplicands ( ),
as well as the final density of the product ( ).

(i) each ensemble member has finite support in its predic-
tions and (ii) the ensemble is trained as a product of experts.
The resulting ensemble then has the property that any sub-
set of members can be evaluated and the whole-ensemble
prediction is guaranteed to have non-zero probability. More-
over, as additional members are evaluated, the probability
of the whole-ensemble prediction is non-decreasing. We
describe practical implementations for real-valued regres-
sion and multi-class classification tasks. Our experiments
demonstrate that our method is able to achieve the desired
early-exit properties on these tasks.

2. Background
Data We assume that our data is availabe as feature-
response pairs (x ∈ X , y ∈ Y), where X is the feature
space and Y is the response space (i.e., label space, in the
case of classification). We then wish to build a predictive
model p : X 7→ Y . We assume access to an N -sized data
set for training: D = {xn,yn}Nn=1.

Deep Ensembles Deep ensembles (DEs; Lakshmi-
narayanan et al., 2017) are comprised of M ∈ Z+ mem-
bers, which we denote pm (y |x) for m ∈ [1,M ]. Each
pm (y |x) is parameterized by a NN, which may have pa-
rameters that are shared across members. We assume each
member has support Ym, which may or may not be equal to
the true response support Y . From a probabilistic perspec-
tive, the ensemble can been seen as a mixture model:

pΣ (y |x) =
M∑

m=1

wm · pm (y |x) , (1)
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where wm are weights such that
∑

m wm = 1, and
wm ≥ 0 ∀ m. In practice, the weights are usually fixed
at wm = 1/M . In theory, we could draw predictions from
the ensemble by sampling a member and then sampling
from that model, but in practice, all members are evaluated
and their predictions combined (e.g., by voting, averaging).

Product of Experts An alternative to treating an ensemble
as a mixture model is to treat it as a product of experts (PoE;
Hinton, 2002):

pΠ (y |x) = 1

Z

M∏
m=1

pm (y |x)wm , (2)

where wm is a weight and Z is the partition function that
ensures the density is normalised:

Z =

∫
y

M∏
m=1

pm (y |x)wm dy.

3. Early-Exit PoE Ensembles
We propose early-exit ensembles: an ensemble whose mem-
bers can be evaluated in any subset and the combined pre-
diction is guaranteed to place non-zero probability on the
full-ensemble’s prediction. The key insight is that PoE en-
sembles are essentially computing an intersection of the
predictions of their members. We can write this property
formally as follows. Let each ensemble component support
a restricted set of predictions: Ym ⊂ Y . Then due to the
PoE being, by definition, a product, the probability of a
particular y ∈ Y is non-zero only when it is in the support
Yπ(1) ∩ . . . ∩ Yπ(m) ∩ . . .Yπ(M) where π(1), . . . , π(M)
is any permutation of [1,M ]. Moreover, let ȳ denote the
modal prediction under the full PoE ensemble pΠ (y |x).
We then have for any subset π(1), . . . , π(J), for J ≤ M−1,
we have that p1:J (ȳ |x) ≤ p1:J+1 (ȳ |x). In the following
subsections we describe two practical implementations that
can achieve this property.

We propose to leverage this property of the product of ex-
perts, to select the number of ensemble members to evaluate
for a given input at test time. Specifically, we propose to
specify a confidence threshold, which could be chosen via
a held-out validation set, that represents the minimum size
of the product distribution’s support after which no more
multiplicands will be included in the product.

3.1. Real-Valued Regression

A continuous distribution with restricted support is the uni-
form. The product of uniform distributions Um (am, bm)
has a very simple form:

pΠ (y |x) = UΠ (amax, bmin) , (3)

Figure 2: Comparison of GND densities while varying the
shape parameter β, and fixing µ = 0 and α = 1. As β → ∞
the GND converges to a uniform distribution.

where amax = max({am}) and bmin = min({bm}). That is,
the lower and upper bounds of the product are, respectively,
the maximum-lower and minimum-upper bounds of the
multiplicands. As we add more ensemble members, the
width of the product density can only get smaller or stay
the same. This behaviour is shown in Figure 1. From a
probabilistic perspective, the product model becomes more
certain, as additional ensemble members are incorporated.
Note that amax could be larger than bmin. This occurs when
there is no overlap in the support of the multiplicands and
corresponds to Z = 0. We discus this in Section 3.3.

Generalised Normal Approximation Unfortunately,
training NNs with uniform likelihoods is not possible due to
the lack of gradients from the loss function—the true label
either is or isn’t inside the bounds of the uniform. Thus,
we must resort to approximation. We replace the uniform
distribution with a generalised Normal distribution (GND).
The GND is a continuous distribution whose density

G(x |µ, α, β) = β

2αΓ(β−1)
exp

[
−
( |x − µ|

α

)β
]
, (4)

is parametrised by a location µ, a scale α, and a shape β.
As shown in Figure 2, by varying the shape parameter, we
can interpolate between a Normal distribution (with scale
α/

√
2) for β = 2, and a uniform distribution (with bounds

µ ± α) as β → ∞. By gradually increasing the shape pa-
rameter β from a low value (e.g., 2) to a high value (e.g., 32)
during the course training, we are able to train an ensemble
of approximately uniform distributions. It is important to
gradually increase the shape parameter since early in train-
ing the ensemble members make random predictions which
do not match the data distribution. This is problematic for
two reasons. Firstly, the higher the value of β, the smaller
the gradients are, which makes training very slow. Secondly,
for training examples which are even slightly outside of the
range [µ−α, µ+α], the log-likelihood will be increasingly
negative with larger βs, resulting in numerical instability.

Replacing uniform distributions with GNDs poses a new
challenge—the product of GNDs does not have a closed
form solution. For high β values we could approximate the
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Figure 3: Four-class illustration of successive product distri-
butions with hard one-vs-rest classifiers showing the support
for the classes ( ) and the normalizing constant (Z) for each
product, as well as the support for the final product ( ).

product of GNDs as a product of uniforms, however, early in
training when β is small this will be a poor approximation.
Luckily, for most regression problems the dimensionality
of y is small, thus we can use numerical integration to
approximate Z. We find that the using trapezoid rule rule

Z =

∫ M∏
m=1

pm (y |x)wm dy (5)

≈
K∑

k=1

∏
m pm

(
yk−1

)wm
+
∏

m pm (yk)
wm

2
∆y (6)

tends to work well.

3.2. Multi-Class Classification

To extend our method to classification, we require a discrete
distribution whose product (i) has support smaller than or
equal to the multiplicands, (ii) for which (i) holds for any
subset of the multiplicands. One such distribution that meets
these desiderata is the hard one-vs-rest categorical:

pm (y |x) =
K∏

k=1

[σ(fk) > 0][y=k] · [σ(fk) ≤ 0][y ̸=k], (7)

where k indexes the classes, σ(·) is the logistic function, fk
is the kth output of a NN f(x), and [cond] is the Iverson
bracket which takes the value 1 if cond is true and 0 other-
wise. 00 is defined to be 1. We illustrate this distribution in
Figure 3. Here the normalizing constant of pΠ (y |x) is

Z =
∑

y′

K∏
k=1

[σ(fk) > 0][y
′=k] · [σ(fk) ≤ 0][y

′ ̸=k], (8)

and takes a value in [0,K]. That is, Z is equal to the number
of classes in the support of the product distribution.

Tempered Approximation Unfortunately, as with the uni-
form distribution, our hard one-vs-rest categorical does not
provide gradients for training. Thus, we once again have
to resort to approximation. In this case, we start with a

standard one-vs-rest categorical and increase a temperature
T to make the distribution harder throughout training:

pm (y |x) =
K∏

k=1

σ(Tfk)
[y=k] · (1− σ(Tfk))

[y ̸=k]. (9)

Note that as T → ∞, (9) better approximates (7). Fur-
thermore, since NNs tend to be overconfident, this is a
reasonable approximation even for smaller temperatures.

3.3. Support Collapse to the Empty Set

When none of the experts agree on the prediction for a
particular input and the product’s support has collapsed to
the empty set, the normalizing constant Z is 0. Conceptually,
each of the experts has vetoed some of the support for the
prediction until there no support anywhere. We consider
such inputs to be out of distribution (OOD).

4. Results
In Figure 4a, we examine the the fit for a 5-member early-
exit ensemble trained using the GND approximation. We
show the fit as progressively more members are included
in the prediction, with two different orderings. We see that
the order of evaluation is unimportant. Firstly, as expected,
the final result is the same, and in both cases the the support
size always decreases or is unchanged. Secondly, within
a few evaluations the fit has almost converged and the last
few multiplicands tend to have smaller effects. Note that
even for the poorer early fits, the prediction bounds cover
the data well. Finally, note that there is no support outside
of the training data range—this data is considered OOD.
Figure 4b, shows that early-exit ensembles can be applied to
multi-class classification. As expected, the support for each
input shrinks as we add more multiplicands to the product.

Figure 6 compares our early-exit ensemble to a standard
deep ensemble on the MNIST dataset. The entropy decays
smoothly as more members are evaluated for the early-exit
ensemble, but remains constant for the DE, suggesting that
entropy could be used as a confidence threshold to trigger
early exiting at test time. However, we also see that the
test error and Brier score of the early-exit ensemble are
worse than the DE. Noting that the product NLL encourages
the ensemble but not necessarily the individual ensemble
members to fit the data, we tried to improve performance
by adding an additional loss term which encourages each of
the members to fit the data. While this reduced the perfor-
mance gap, it did not remove it. NLL is more favourable
for early-exit ensembles, however, these results are not di-
rectly comparable because we have allowed the early-exit
ensemble to reject ‘OOD’ inputs in the test set, which the
other models are unable to do. Since the test set is sampled
from the same distribution as the training set, we should not
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(a) Comparison of two different orderings (top vs bottom) on the simple 1d dataset (Antorán et al., 2020). In each column the product
support ( ) and mean ( ), as well as the support ( ) of the multiplicand to be included in the next column’s product are shown.

(b) Support for each of 4-classes ( , , , ) in a simple spirals classification task.

Figure 4: Evolution of a 5-member early-exit ensemble as 1 to 5 (left to right) members are included in the prediction .

1 2 3 4 5

# members

0.0

0.1

0.2

0.3

0.4

H

1 2 3 4 5

# members

0.05

0.10

0.15

0.20

0.25

Er
ro

r

1 2 3 4 5

# members

0.01

0.02

Br
ie

r
Sc

or
e

1 2 3 4 5

# members

0.0

0.1

0.2

0.3

0.4

N
LL

Ours
DE

Figure 5: Predictive entropy (H), classification error (Error), Brier score, and negative log-likelihood (NLL) for a product of
hard one-vs-rest classifiers (Ours), and a standard deep ensemble (DE), evaluated on the MNIST test set.

expect any inputs to be rejected. Yet they sometimes are,
indicating overconfidence of the early-exit ensemble.

5. Related Work
Endowing neural networks with early-exit properties has
received much attention of late (Scardapane et al., 2020b;
Laskaridis et al., 2021). Many of these approaches rely on
parameterized gates that determine when to exit and/or how
much weight to place on an exit (Graves, 2016; Teerapit-
tayanon et al., 2016; Scardapane et al., 2020a). The only
work we are aware of that considers ensembling and early
exiting is that of Qendro et al. (2021). However, this work
re-interprets early-exit architectures as an ensemble. We,
on the other hand, are interested in endowing traditional en-
sembling with an early termination property. In this regard,
our work is more related to work that constructs ensembles
progressively, such as boosting (Schapire, 1999; Grubb &
Bagnell, 2012). Yet our work allows for ensemble members

to be trained in parallel, not sequentially as in boosting.

6. Conclusion & Future Work
We have described a practical algorithm for early-exit en-
sembles that uses a novel product-of-experts formulation
to provide guarantees. We have demonstrated that our al-
gorithm can be applied to real-valued regression and multi-
class classification tasks. However, we have also seen that,
when early exiting, predictive performance of our method
is poor versus standard ensembles. A first step in future
work is to remedy this short coming. It is possible that a
more rigorous hyperparameter search could be the solution–
the standard hyperparameters were based on the DE and
early-exit specific hyperparameters were not exhaustively
searched. Our approach must also be scaled up and validated
on more realistic settings. We believe that investigating the
OOD detection capabilities of our method would be fruitful.
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A. Implementation Details
Our models are implemented using jax. We use flax to build neural networks, optax for optimisation, and difrax for
constructing probability distributions.

All ensembles are constructed from 5 members. The members are multi-layer perceptrons (MLPs) with residual connections.
The MLPs each consist of a Dense input layer, followed by D residual blocks and an output layer. The residual blocks
consist of a Dense hidden layer followed by a ReLU activation and BatchNorm. For regression, we used a hidden width
of 50 and D = 2 residual blocks. For classification, we used a hidden width of 100 and D = 5 residual blocks.

We initialise the weights using the same fan-in uniform variance scaling scheme as PyTorch. Similarly, for our
BatchNorm layers, we set the epsilon to 1× 10−6 and momentum to 0.9 to match the PyTorch defaults.

We train our models using SGD with learning rates of 1 × 10−4 and 3 × 10−3 for the toy regression/classification and
MNIST respectively, a momentum of 0.9, and a weight decay of 1 × 10−4. We train for 200 and 50 epochs, for the toy
settings and MNIST, respectively. We used a held out validations set to choose the best epoch. For the early-exit ensembles,
we only performed validation after β/T was within 95% of the final value. We increased β/T from 2 to 16 using a linear
schedule updated per-batch.

For all regression models, we predicted the location parameter µ using an NN, but learnt a homoscedastic scale parameter σ.

For the product of GNDs, we calculate Z in (6) using jax.numpy.trapz, which is fully differentiable. We use
∆y = 0.001, ymin = −10 and ymax = 10.

In Figures 5 and 6, the results are averaged over 3 random seeds and all possible subsets of each ensemble size.

The loss used for training the early-exit ensembles is:

L = −α · log pΠ (y |x)− (1− α) ·
∑
m

log pm (y |x) , (10)

where α = 0.5. We found that this improved the performance of the individual ensemble members without reducing the
performance of the ensemble itself. Note that the first term–the NLL of the product–says nothing about the fit of the
individual ensemble members, only the fit of the product. We also tried pre-training the early-exit ensemble as a standard
ensemble, but found that this did not help.

B. Additional Results
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Figure 6: Predictive entropy (H), mean squared error (MSE) and negative log-likelihood (NLL) for a product of GNDs
(PoG), a product of normals (PoN), and a standard deep ensemble (DE), evaluated on the test set of simple 1d. The results
here match those of Figure 5. Additionally, we see that the PoN behaves very similarly to the DE, suggesting that a product
formulation is not sufficient for early exiting and that finite support is also required.


