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Abstract
We propose a new proxy measure for Neural Ar-
chitecture Search (NAS) focusing on the flatness
of loss surface. One step forward to the existing
NAS studies utilizing the validation-set accuracy
or angle which measures convergence speed dur-
ing training, we claim that the flatness of the loss
surface can be a promising proxy for predicting
the generalization capability of neural network
architectures. To validate the claim, we formulate
a novel approach of capturing the depth and flat-
ness of the loss surface around local minima of a
given network architecture. We demonstrate the
effectiveness of the proposed method by perform-
ing experiments on various search spaces (NAS-
Bench-201, DARTS), diverse datasets (CIFAR,
ImageNet, MS-COCO), and various tasks such as
object detection.

1. Introduction
Recently, Neural Architecture Search (NAS) (Baker et al.,
2016; Liu et al., 2018; Real et al., 2019; Tan et al., 2019) has
evolved to achieve remarkable accuracy along with the de-
velopment of human-designed networks (Dosovitskiy et al.,
2020; He et al., 2016; Tan & Le, 2019) on image recognition
task. Several NAS methods (Chu et al., 2020; Hong et al.,
2022; Zhang et al., 2021; Zoph et al., 2018) further demon-
strated generalization ability (generalizability) of these au-
tomatically designed networks with high test accuracy per-
formance and even with simply transferring the found ar-
chitecture onto the other datasets. For the widespread lever-
age of architectures found by NAS on the other various
tasks such as object detection (Lin et al., 2014) and seg-
mentation (Cordts et al., 2016) (task-generalizability), in-
vestigating generalizability of each architecture candidate
is a prerequisite and indispensable. Despite its importance,
quantitative measuring of generalizability during architec-
ture search process is still an open problem. In this paper,
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Figure 1. Shape of local loss minima found by angle-based search-
ing (ABS) and flatness-based searching (FBS). (a) Architecture
found by ABS can not guarantee to be located within flat local
minima. (b) FBS searches for architectures with flat local minima
by inspecting loss values of local neighborhood weights.

Comparison Kendall’s Tau
CIFAR-10 CIFAR-100 ImageNet16-120

Angle & Flatness 0.4302 0.4724 0.4097
Accuracy & Flatness 0.7923 0.7568 0.7620

Table 1. Rank correlation between searching metrics on NAS-
Bench-201 search space, showing relatively low-correlation be-
tween angle and flatness. We evaluated validation accuracy, an-
gle, and flatness of all architectures and compared Kendall’s Tau
(Kendall, 1938) rank correlation between these searching met-
rics on CIFAR-10, CIFAR-100, and ImageNet16-120 (Chrabaszcz
et al., 2017) dataset.

we discover an optimal proxy measure to discriminate gen-
eralizable architectures during search process.

Most previous NAS algorithms including the pioneering
differentiable search method, DARTS (Liu et al., 2018) and
evolutionary search method, SPOS (Guo et al., 2020) use
validation performance as a proxy measure for the general-
izability as follows:

a∗ = argmax
a∈A

S(a), (1)

where a and A denote an architecture candidate and the
entire search space, and S(·) represents a measurement
function indicating the validation performance. Here, the
measurement function is defined by accuracy (Guo et al.,
2020), negative of loss value (Liu et al., 2018) on a valida-
tion dataset (For detailed formulation, see Appendix A.1).
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These performance-based searching (PBS) methods suffer
from overfitting on validation set, resulting in poor test-set
generalization (Guo et al., 2020; Oymak et al., 2021; Zela
et al., 2019; Zhang et al., 2021). The lack of generalizability
for these PBS methods hinders broader usage of resultant
found architecture on various tasks and datasets.

To explicitly search out generalizable architectures, recent
literatures (Shu et al., 2019; Zhang et al., 2021) empirically
observed that architectures with fast convergence during
training tend to have high correlation with better test gen-
eralizability. Based on the empirical connection between
convergence speed and generalization, RLNAS (Zhang et al.,
2021) proposed an Angle-Based Searching (ABS) method,
which uses angle (i.e. convergence speed) as a proxy perfor-
mance measure during searching process. The ABS method
defines the score function S(a) in Eq (1) by measuring
the angle between the initial weight parameters W 0(a) and
final weight parameters W f (a) of the architecture a. Con-
sequently, they search for the architecture a∗ which max-
imizes the angle (For detailed formulation, see Appendix
A.2). ABS empirically demonstrated superior performance
compared to PBS methods on various search spaces and
datasets (Zhang et al., 2021). However, we argue that ABS
still has a large headroom for better generalization in terms
of flat (wide) local minima, which has been considered as
one of the key signals for inspecting generalizability of a
trained network (Cha et al., 2020; He et al., 2019; Keskar
et al., 2016; Pereyra et al., 2017; Zhang et al., 2018).

Since ABS only concerns the convergence speed of an archi-
tecture regardless of its shape of local minima, architectures
found by ABS with large angles can not be guaranteed to
have flat local minima, as can be seen in figure 1. Meanwhile,
architectures not chosen by ABS (i.e. small angle) might
have better generalizability based on the flat property of loss
minima. Table 1 corroborates that angle is indeed in short
of correlation with flatness of local minima. Inspired by this
weak implicit connection between angle and flatness of lo-
cal minima, we propose a flatness-based searching method,
namely FBS, that can either replace or further enhance ABS
in terms of generalizability. The proposed FBS finds local
minima having deep and flat loss surface, and we note that
the inspection of flatness should also be re-examined as a
key factor for securing architectures with better generaliz-
ability on NAS domain, as previous literatures showed its
strong empirical connections between flatness of local min-
ima and actual test generalization performance (Cha et al.,
2020; Goyal et al., 2017; Hoffer et al., 2017; Jastrzębski
et al., 2017; Keskar et al., 2016; Masters & Luschi, 2018;
Smith & Le, 2017).

Based on the reportings, in this paper, we propose a novel
flatness-based NAS framework, namely GeNAS, for bet-
ter discriminating generalizability of architectures during

searching. We demonstrate the superior generalizability of
architectures found by our GeNAS on various datasets and
downstream tasks such as object detection.

2. Method
2.1. GeNAS: Generalization-aware NAS with Flatness

of local minima

Since SPOS (Guo et al., 2020) can flexibly embrace a new
architecture search proxy measure owing to the decoupled
training and searching process unlike gradient-based NAS
such as DARTS, we construct our proposed search frame-
work based on SPOS, dubbed GeNAS. GeNAS is aimed
to search for network architectures with better generaliza-
tion performance. To this end, we introduce a procedure
for quantitatively estimating flatness of an architecture’s
converged minima as a search proxy measure Fval(·) as
follows:

a∗ = argmax
a∈A

Fval(W
∗
A(a)). (2)

From the previous studies (Cha et al., 2020; Zhang et al.,
2018) empirically investigating the landscape of converged
local minima, the neural networks having flat local min-
ima where the changes of the validation loss around the
local minima are relatively small show better generalization
performance at test phase. Based on these simple but effec-
tive empirical connections, we introduce a novel method
that searches for the architecture with maximal loss flatness
around converged minima which can be formulated as:

Fval(θ) = (

t−1∑
i=1

L(θ +N(σi+1))− L(θ +N(σi))

σi+1 − σi
)−1,

(3)
where L(θ) denotes validation loss value given weight pa-
rameter θ abbreviating W ∗

A(a), and N(σi) denotes random
Gaussian noise with its mean and standard deviation being
0 and σi, respectively. The hyper-parameters σ denotes the
range for inspection of flatness around the converged local
minima, and t denotes the number of perturbations with
Gaussian noise. We set different σ for each target search
dataset since the optimal range of flatness around the local
minima is different for each dataset. Empirically, we set the
number of iterations t to three, which is enough to achieve
a good trade-off between test performance and search costs.
To perturb the weight parameters, we use unidirectional ran-
dom noise, much simpler than recent flatness measuring ap-
proaches using Hessian (Yao et al., 2019) and bidirectional
random noise (He et al., 2019) which can induce consider-
able amount of computational cost. We observed that our
choice is sufficient to discriminate architectures with high
test generalization performance as shown in Section 3.1. We
point out that most similar works (Chen & Hsieh, 2020; Zela
et al., 2019) to our method tackle to alleviate fluctuating loss
surface and accuracy caused by the architecture parameters
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Figure 2. Validation loss curvatures of architectures sorted by
the ground-truth test accuracy which is given by NAS-Bench-
201 (Dong & Yang, 2020) on CIFAR-100.

from DARTS (Liu et al., 2018). Meanwhile, our method can
be applied on any architecture search frameworks without
dependence on architecture parameters of DARTS, such as
evolutionary-based searching algorithm.

Eq (2) and (3) would find architecture a∗ having the flattest
local minima in the entire search space, but a∗ can have
sub-optimal local minima far from the global minimum. In
Figure 2, two of the bottom architectures with the lowest
ground-truth test accuracy given by NAS-Bench-201 show
the flattest local minima with relatively large loss values
compared to the middle and top architectures. Therefore,
naive investigation of the flatness of an architecture possi-
bly comes to achieve a sub-optimal architecture in terms of
loss value. Note that the top architectures have the lowest
loss values compared to middle and bottom architectures,
equipped with flatness near converged minima. Correspond-
ingly, considering both flatness of loss landscape and the
depth of minima is essential for excavating a generalizable
architecture. To implement the supposition, we add an addi-
tional term on Eq (3) to search for architectures with deep
minima, along with flatness as follows:

Fval(θ) = (

t−1∑
i=1

|L(θ +N(σi+1))− L(θ +N(σi))

σi+1 − σi
|+

α|L(θ +N(σ1))

σ1
|)−1

(4)

Here, σ1 denotes the smallest perturbation degree among σ,
hence the second term inspects how low the loss value near-
est converged minima is. The term α denotes the balancing
coefficient term between flat and deep minima, which is set
to 1 unless specified.

2.2. Searching with Combined Metrics

Recent works (Hosseini et al., 2021; Mellor et al., 2021)
adopted a combined search metric for enhancing the perfor-

Searching Metric Params (M) FLOPs (G) Top-1 Acc (%)Top-5 Acc (%)
Angle 5.4 0.61 75.00 92.31

Accuracy 5.4 0.60 75.37 92.23
Flatness 5.2 0.58 76.05 92.64

Angle + Accuracy 5.6 (+0.2) 0.62 (+0.01) 75.53 (+0.53) 92.61 (+0.30)
Angle + Flatness 5.4 (+0.0) 0.60 (-0.01) 75.72 (+0.72) 92.46 (+0.15)

Accuracy + Flatness 5.4 (+0.0) 0.60 (+0.00) 75.85 (+0.48) 92.74 (+0.51)

Table 2. Transferability of various searching metrics from CIFAR-
100 onto ImageNet. The quantities in the parentheses denote the
amount of change induced by the integrated metric from the base-
line metric. Improvements from integrating Flatness term is de-
noted with blue color.

mance of the resultant architecture. Hosseini et al. (2021)
employed an integrated search metric where the conven-
tional cross-entropy loss over a clean image is combined
with approximately measured adversarial robustness lower
bound to enhance test accuracy of both clean images and
adversarially attacked images. Inspired by the weak correla-
tion between existing search metrics (e.g. angle, validation
accuracy) and flatness (Table 1), we target to explicitly ful-
fill the large headroom of conventional search metrics to
find better generalizable architectures in terms of our pro-
posed flatness-based search measure (Eq (4)). Formally, we
combine existing metrics with flatness as a search proxy
measure as follows:

a∗ = argmax
a∈A

S(W ∗
A(a)) + γβFval(W

∗
A(a)) (5)

where S denotes conventional search metrics such as angle
and validation accuracy, γ is a balancing parameter between
existing metric and flatness, and β is a normalization term,
which is fixed as σ−1

1 , for matching scale of flatness term
with existing search metric.

3. Experiments
In this section, we evaluate our proposed GeNAS frame-
work on various search spaces including DARTS (Liu et al.,
2018) and NAS-Bench-201 (Dong & Yang, 2020) (See Ap-
pendix C.1) with widely-used benchmark datasets such as
CIFAR-10/100 and ImageNet. We also tested transferabil-
ity of our excavated architectures onto other task domain,
object detection, with MS-COCO (Lin et al., 2014) dataset.

3.1. Search Results on The DARTS Search Space

In Table 2, we analyze transferability of architectures found
on small datasets such as CIFAR onto ImageNet, with
DARTS search space. The results show that flatness consis-
tently reports significantly superior searching performance
even with fewer flops and parameters compared to ABS or
PBS metrics, about 1.05% and 0.68% better top-1 accuracy,
respectively. Furthermore, when flatness is combined with
angle and accuracy as a search proxy measure, top-1 ac-
curacy increases by 0.72% and 0.48%, respectively, which
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Search Dataset Method Params (M) FLOPs (G) Top-1 Acc (%) Top-5 Acc (%)

CIFAR-10

DARTS (Liu et al., 2018) 4.7 0.57 73.30 91.30
PC-DARTS (Xu et al., 2019) 5.3 0.59 74.90 92.20

FairDARTS-B (Chu et al., 2020) 4.8 0.54 75.10 92.50
SPOS (Guo et al., 2020) 5.4 0.60 75.32 92.20

SDARTS-RS (Chen & Hsieh, 2020) 5.5 0.61 75.52 92.66
SDARTS-ADV (Chen & Hsieh, 2020) 5.5 0.62 75.61 92.39

P-DARTS (Chen et al., 2019) 4.9 0.56 75.60 92.60
RLNAS (Zhang et al., 2021) 5.3 0.59 75.70 92.45

DropNAS† (Hong et al., 2022) 5.4 0.60 75.98 92.80
GeNAS (Flatness) 5.6 0.61 75.95 92.74

GeNAS (Angle + Flatness) 5.3 0.59 76.06 92.77

CIFAR-100

PC-DARTS (Xu et al., 2019) 5.3 0.59 74.75 92.16
RLNAS (Zhang et al., 2021) 5.4 0.61 75.00 92.31

DropNAS† (Hong et al., 2022) 5.1 0.57 75.07 92.33
P-DARTS (Chen et al., 2019) 5.1 0.58 75.30 92.50

SPOS (Guo et al., 2020) 5.4 0.60 75.37 92.23
GeNAS (Flatness) 5.2 0.58 76.05 92.64

GeNAS (Angle + Flatness) 5.4 0.60 75.72 92.46

Table 3. ImageNet performance comparison of SOTA NAS methods searched with DARTS search space on CIFAR-10 and CIFAR-100
dataset. † denotes that SE (Hu et al., 2018) module is excluded for fair comparison with other methods.

Method Params (M) FLOPs (G) AP AP50 AP70 APS APM APL

PC-DARTS (Xu et al., 2019) 5.3 0.59 35.56 55.50 37.45 19.85 38.80 47.70
RLNAS (Zhang et al., 2021) 5.4 0.61 35.98 55.78 38.22 20.80 39.72 47.90

SPOS (Guo et al., 2020) 5.4 0.60 36.04 56.30 38.08 20.01 39.49 47.76
DropNAS (Hong et al., 2022) 5.1 0.57 36.39 56.14 38.45 21.88 39.82 48.20

GeNAS (Flatness) 5.2 0.58 37.05 56.92 39.19 20.70 40.68 49.74
GeNAS (Angle + Flatness) 5.4 0.60 36.59 56.37 38.79 21.43 39.94 49.02

Table 4. Object detection performance comparison of SOTA NAS methods on MS COCO dataset.

was consistently shown in case of searching with CIFAR-10
(See Appendix C.2).

3.2. Comparison with SOTA NAS methods

In Table 3, our GeNAS clearly represents large headroom
compared to the other SOTA NAS methods. Especially in
comparison with SDARTS (Chen & Hsieh, 2020) which
is a similar approach to GeNAS by using an implicit regu-
larization for smoothing accuracy landscape, our GeNAS
outperforms with comparable number of FLOPs. Table 2
and 3 results show that our proposed flatness search metric
indeed serves as a powerful search proxy measure for find-
ing well-transferable architectures and also enhances the
other search metrics to have stronger ability to find architec-
tures with better test generalization performance.

3.3. Task Generalization Ability

We evaluate the generalization capability of architectures
found by GeNAS on downstream task, specifically object
detection. We firstly re-train architectures found on CIFAR-
100 onto ImageNet, and finetune on MS-COCO (Lin et al.,
2014) dataset. For training, we adopt default training strat-
egy of RetinaNet (Lin et al., 2017) from Detectron2 (Wu
et al., 2019). We only replace the backbone network of Reti-

naNet for analyzing sole impact of architectures found by
each NAS method in terms of generalization ability across
various task domains. Table 4 shows that our GeNAS frame-
work guided by flatness measure achieves the best AP scores
without bells and whistles. In case of RLNAS (angle) com-
bined with flatness as a search metric, AP is enhanced by
about 0.6%, without increase of FLOPs or number of pa-
rameters.

4. Conclusion
This paper demonstrates that flatness of local minima can
be directly employed as a proxy of discriminating and
searching for generalizable architectures. Based on quan-
titative benchmark experiments on various search spaces
and datasets, we demonstrate the superior generalizability
of our flatness-based searching over conventional search
metrics, while showing comparable or even better search-
ing performance compared to recent state-of-the-art NAS
frameworks. We further analyze insufficient generalizability
of conventional search metrics in terms of flatness of local
minima. Consequently, integrating conventional search met-
rics with our proposed flatness measure can further lead to
significantly boosting the searching performance. We also
demonstrate superior generalization capability of GeNAS
on the downstream object detection task, compared to other
search metrics and SOTA NAS methods.
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A. Formulation of PBS and ABS
This section describes the detailed formulation of PBS method and ABS method, respectively.

A.1. PBS: Single Path One-Shot NAS.

In order to decouple the biased connection between weight parameters of SuperNet and its architecture parameters, Single
Path One-Shot NAS (SPOS) (Guo et al., 2020) sequentially optimizes the weight parameters of SuperNet and select SubNet
that shows the highest validation accuracy where a SubNet is subsampled from SuperNet. Formally, entire training and
search processes are described as:

W ∗
A = argmin

WA

Ea∼U(A)Ltrain(a,WA), (6)

a∗ = argmax
a∈A

Sval(W
∗
A(a)), (7)

where a denotes the SubNet architecture inherited from the SuperNet architecture A, where WA denotes the weight
parameters of SuperNet. WA(a) denotes the weight of the architecture a inherited from the SuperNet weight WA. U(A)
denotes the uniform distribution for sampling a from A. In Eq (6), the SubNet weight parameters WA(a) selected by
random-uniformly are optimized, giving all the SubNets a ∼ U(A) to be uniformly optimized. In Eq (7), given the trained
SuperNet weight parameters W ∗

A, each SubNet candidate a ∈ A is evaluated by the architecture score measurement function
Sval(·), here defined as accuracy on validation set, and consequently the architecture having highest accuracy a∗ is selected.
Specifically, SPOS utilizes evolutionary searching algorithm for Eq (7), where top-K populations sorted by validation
accuracy repeatedly Cross-Over with each other and Mutate itself to search for the architecture having better validation
accuracy. As SPOS decouples the SuperNet training and architecture searching process, it becomes flexible in using a new
search proxy measure for Eq (7).

A.2. ABS: Random Label NAS.

Random Label NAS (RLNAS) (Zhang et al., 2021) proposed a new architecture score measurement function Sangle() ,
which uses an angle as a search proxy measure rather than validation accuracy, as follows:

Sangle(W
∗
A(a)) = acos(W 0

A(a)·W
f
A(a)/(∥ W 0

A(a) ∥2∥ W f
A(a) ∥2)), (8)

where W 0
A(a) and W f

A(a) denotes initial weight parameters of SubNet a before training and final weight parameters of a
after training is finished, respectively. The symbol · denotes the inner product. For angle estimation, W 0

A(a) and W f
A(a) are

both vectorized by flattening all the weight parameters of WA(a) into one-dimensional vectors and concatenating these
weight vectors. Therefore, Sangle() indicates angle between initial and converged weight parameters, which also means
the convergence speed of each architecture. RLNAS claimed that the high convergence speed is correlated with the test
generalization performance, so angle can be used for the proxy measure of architecture evaluation. However, we point out
that RLNAS still lacks awareness of generalization in terms of flatness of local minima (Figure 1 and Table 1). Therefore,
we conjecture that the generalizability of RLNAS can be further enriched through explicitly combining the angle metric
with a flatness-aware measure.

B. Training and Searching Setups
This section describes detailed experimental setups for training and searching on NAS-Bench-201 and DARTS search space.

B.1. NAS-Bench-201 search space.

NAS-Bench-201 provides a relatively small search space where 5 edges with 6 possible operation candidates compose a
directed acyclic graph cell, thus the number of architecture candidates from the entire search space is 56 = 15625. Using the
ground truth test accuracy of all of the candidate architectures from NAS-Bench-201, we measure Kendall’s Tau score by
comparing rank correlation between search proxy measure and those from NAS-Bench-201. We use the equivalent settings to
NAS-Bench-201 for constructing training / validation / test set of CIFAR-10, CIFAR-100, and ImageNet16-120 (Chrabaszcz
et al., 2017). For training SuperNet, we use the same training settings (e.g. SGD optimizer with 5e−4 weight decay factor,
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250 training epochs, cosine learning rate scheduling annealed from 0.025 to 0.001) from RLNAS (Zhang et al., 2021).
During evolutionary searching, we set the entire size of population as 100 with 20 evolution iterations, following RLNAS.
For investigating the loss landscape near converged minima, we set σ = {2e− 3, 1e− 2, 2e− 2} as default unless specified.

B.2. DARTS search space.

DARTS (Liu et al., 2018) has a larger search space than NAS-Bench-201, which provides 8 edges with 7 possible operation
candidates (excluding zero operation). Furthermore, reduction cell (stride = 2) is also included in search target, further
broadening the search space and increasing the difficulty of searching. We evaluate each NAS method by searching
architectures on proxy datasets such as CIFAR-10 and CIFAR-100. For the selected architectures, we train each model on
ImageNet from scratch and measure the top-1 accuracy. Following RLNAS, we set the number of cells in SuperNet as 8
and train 250 epochs. We divide the original training set into training / validation set with equal size on CIFAR-10/100,
as in DARTS (Liu et al., 2018) and PC-DARTS (Xu et al., 2019). During evolutionary searching, we set the entire size of
population as 50 with 20 evolution iterations, following SPOS (Guo et al., 2020). We set σ = {1e − 5, 5e − 5, 1e − 4},
{1e− 3, 3e− 3, 6e− 3} for searching on CIFAR-10 and CIFAR-100, respectively. For scratch training on ImageNet, we
adjust initial channels of a target network to have FLOPs around 0.6G. We set the training hyper-parameters exactly same as
PC-DARTS with 8 V100 GPUs.

C. Experiments
This section describes additional experiments on various search spaces such as NAS-Bench-201 and DARTS, with ablation
studies for components of our proposed GeNAS framework.

C.1. Search Results on NAS-Bench-201

Searching Metric Kendall’s Tau
CIFAR-10 CIFAR-100 ImageNet16-120

Angle 0.6671 0.6942 0.6342
Accuracy 0.5701 0.5394 0.5411
Flatness 0.6047 0.5918 0.5800

Angle + Accuracy 0.7539 (+0.0868) 0.7004 (+0.0062) 0.6895 (+0.0553)
Angle + Flatness 0.7636 (+0.0965) 0.7619 (+0.0677) 0.7368 (+0.1026)

Accuracy + Flatness 0.6023 (+0.0322) 0.5658 (+0.0264) 0.5657 (+0.0246)

Table 5. Kendall’s Tau of various searching proxy metrics on NAS-Bench-201. The quantities in the parentheses denote the amount of
Kendall’s Tau changed by the integrated metric from the baseline metric. Improvements from integrating Flatness term is denoted with
blue color.

C.1.1. STAND-ALONE METRIC PERFORMANCE.

We compare search performance of various search proxy metrics such as angle, validation accuracy, and our proposed
flatness of minima in Table 5. We only replaced the architecture fitness indicator with the above mentioned metrics during
evolutionary searching, and measured Kendall’s Tau considering the entire architecture candidates’ rank correlation. In
Table 5, ABS shows the best searching performance with the highest Kendall’s Tau score, representing the powerful test
generalizability on small scale datasets such as CIFAR and ImageNet16-120. However, we highlight that angle is still
insufficient for achieving better test generalizability in terms of flatness on local minima (Table 1), and we observe significant
improvement on searching performance when flatness is granted to the local-minima of the architecture found from ABS.

C.1.2. COMBINED METRIC PERFORMANCE.

Inspired by the weak connection between angle metric and flatness of local minima, shown in Table 1, we test a integrated
search proxy measure where angle is explicitly combined with flatness for better generalization. In Table 5, angle metric
combined with flatness as a search metric shows significantly enhanced Kendall’s Tau rank correlation compared to that of
stand-alone angle case on CIFAR-10/100 and ImageNet16-120. The improvements show that our FBS can drive ABS to
better discriminate generalizable architectures by seeking not only its fast convergence speed but also flatness of curvature
near converged local minima.
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Figure 3. Test loss curvatures of architectures found by Angle, Angle+Accuracy, Angle+Flatness on CIFAR-10/100 (left, center) with the
NAS-Bench-201 search space and ImageNet (right) with the DARTS search space. For ImageNet results, we transferred architectures
found from CIFAR-10 onto ImageNet.

µ = 0 µ = 0.05 µ = 0.1 µ = 0.2 µ = 0.5 µ = 1

Kendall’s Tau
(CIFAR-10) 0.7539 0.7531 0.7180 0.6539 0.5592 0.5262

Table 6. Kendall’s Tau trend on CIFAR-10 for the Angle + Accuracy + Sharpness combination to investigate the impact of the
inherent flatness characteristic of accuracy-based searching. µ denotes balancing coefficient for the sharpness term (i.e., the negation of
the flattness metric), where µ = 0 denotes Angle + Accuracy case. The result shows that sharpening (unflattening) the loss surface
harms the Kendall’s Tau.

Meanwhile, it is worth noting that appending the validation accuracy metric onto the angle metric also improved Kendall’s
Tau on all the dataset. PBS (i.e., accuracy-based search) has shown strong correlation with FBS (Table 1), which means there
exists a potential ability in PBS to discriminate flat or non-flat architectures on NAS-Bench-201 search space. Therefore, we
conjecture that the possible reason for the improvements for angle combined with accuracy comes from this inherent flatness
searching ability of PBS. To demonstrate this hypothesis, we explicitly harm the inherent flatness characteristic of PBS by
adding sharpness term (the negation of the flatness term in Eq (4)) on Angle+Accuracy, and the searching performance
becomes significantly degraded as the weight for sharpness term increases (Table 6). Furthermore, Figure 3 (left, center
subfigure) shows that the found architecture from angle combined with accuracy indeed shows more smoothed test loss
landscape near converged minima compared to that of angle case. We note that angle combined with flatness induces the
flattest architecture equipped with the deepest minima compared to the angle or angle with accuracy case, achieving the
largest performance gain as shown in Table 5.

C.2. Searching on CIFAR-10 with DARTS Search Space

We compare our proposed FBS with other search metrics on CIFAR-10 in Table 7. As a stand-alone search metric, flatness
measure shows the best searching performance among the other metrics including accuracy and angle with comparable
FLOPs (∼= 0.6G) and parameters, when transferring searched architecture from CIFAR-10 onto ImageNet. Furthermore,
when angle is combined with flatness, loss landscape of found architecture becomes to be more flat and deeper as shown in
right subfigure of Figure 3. As a result, searching performance is further improved by 0.36% top-1 accuracy without any
increase of either FLOPs or parameters. Also, the accuracy-based proxy measure also achieved performance gain when
flatness is combined. Meanwhile, it is noted that angle combined with accuracy only harms top-1 accuracy slightly. We
conjecture that the inherent flatness property of PBS shown in small search spaces such as NAS-Bench-201 (Table 1) might
not be consistently secured on large search space including DARTS as shown in right subfigure from Figure 3, resulting in
slight performance degradation. In Table 3, GeNAS (Flatness, Angle+Flatness) show the best top-1 accuracy under FLOPs
being ∼= 0.6G setting, compared to the other state-of-the-art NAS methods.
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Searching Metric Params (M) FLOPs (G) Top-1 Acc (%) Top-5 Acc (%)
Angle 5.3 0.59 75.70 92.45

Accuracy 5.4 0.60 75.32 92.20
Flatness 5.6 0.61 75.95 92.74

Angle + Accuracy 5.5 (+0.2) 0.61 (+0.02) 75.62 (-0.08) 92.55 (+0.10)
Angle + Flatness 5.3 (+0.0) 0.59 (+0.00) 76.06 (+0.36) 92.77 (+0.32)

Accuracy + Flatness 5.6 (+0.2) 0.61 (+0.01) 75.72 (+0.40) 92.59 (+0.39)

Table 7. Transferability of various searching metrics from CIFAR-10 onto ImageNet. The quantities in the parentheses denote the amount
of change induced by the integrated metric from the baseline metric. Improvements from integrating Flatness term is denoted with blue
color.

C.3. Ablation Study

To better analyze our proposed FBS-based GeNAS framework, we conduct ablation study of each component and hyper-
parameters consisting GeNAS.

C.3.1. FLATNESS RANGE.

We analyze the effect of range of inspecting flatness near converged local minima in Table 8. The results demonstrate
that searching flat-architectures within too small area near converged minima (1st row in Table 8) is not sufficient for
discriminating generalizable architectures. When σ is set to {2e − 3, 1e − 2, 2e − 2}, Kendall’s Tau is considerably
improved, while further widening the flatness inspection range (4th row in Table 8) only significantly degrades the searching
performance on various datasets.

σ
Kendall’s Tau

CIFAR-10 CIFAR-100 ImageNet16-120
{1e− 6, 5e− 6, 1e− 5} 0.5756 0.5496 0.5524
{5e− 4, 1e− 3, 2e− 3} 0.5770 0.5503 0.5531
{2e− 3, 1e− 2, 2e− 2} 0.6047 0.5918 0.5800
{2e− 3, 2e− 2, 4e− 2} 0.5416 0.3404 0.2364

Table 8. Kendall’s Tau on the NAS-Bench-201 search space according to the perturbation range σ, inspecting the effect of flatness range
near local minima.

C.3.2. DEEP AND LOW MINIMA.

We further investigate the effect of searching architectures equipped with not only flatness but also depth of loss landscape
near converged minima. Specifically, we adjust α in Eq (4), where α = 0 denotes searching with only flatness of local
minima. Results on Table 9 demonstrate that as α value increases from zero to one, searching performance is drastically
enhanced, indicating the indispensability of searching with both flatness and depth of minima. Note that α = 0 case can
search out a sub-optimal architecture that has largely flat loss curvature but its loss values near local minima are too high,
as shown in Figure 2. When α is further increased to α > 1, Kendall’s Tau rank correlation starts to decrease, denoting
that searching with largely depending on depth of converged minima is not optimal for discriminating better generalizable
architectures.

α = 0 α = 0.1 α = 0.5 α = 1 α = 2 α = 4 α = 8 α = 16

Kendall’s Tau
(CIFAR-10) 0.1777 0.4026 0.5890 0.6047 0.5964 0.5898 0.5847 0.5820

Table 9. Kendall’s Tau on CIFAR-10 with different α in Eq (4).
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C.3.3. EFFECT OF FBS ON ABS.

We analyze effect of integrating flatness on ABS. Specifically, we adjust γ in Eq (5), which balances coefficient concerning
about the ratio of flatness to angle term. In Table 10, integrating flatness with a small proportion to angle mildly improves
top-1 accuracy. As γ increases, top-1 accuracy of searched architecture gradually increases as to reach 0.72% improvement
over γ = 0 (ABS) case, with comparable FLOPs and parameters.

γ F latness (%) Params (M) FLOPs (G) Top-1 Acc (%) Top-5 Acc (%)
0 0 5.43 0.61 75.00 92.31

0.5 20 5.45 (+0.02) 0.60 (-0.01) 75.22 (+0.22) 92.39 (+0.08)
1.5 43 5.57 (+0.14) 0.61 (+0.00) 75.58 (+0.58) 92.44 (+0.13)
6 76 5.41 (-0.02) 0.60 (-0.01) 75.63 (+0.63) 92.54 (+0.23)

16 89 5.41 (-0.02) 0.60 (-0.01) 75.72 (+0.72) 92.46 (+0.15)

Table 10. Searching performance of Angle + Flatness with different γ values, where searched on CIFAR-100 and transferred onto
ImageNet. Flatness (%) denotes the average ratio of Flatness compared to Angle during evaluation of architectures on evolutionary
searching algorithm. The quantities in the parentheses denote the amount of change compared to the γ = 0 case.

C.3.4. EFFECT OF FBS ON PBS.

We analyze effect of integrating our proposed FBS on PBS in Table 11. Integrating flatness with a small proportion shows
comparable top-1 and top-5 accuracy compared to PBS (γ = 0 case). As γ increases, top-1 accuracy of searched architecture
also increases as to reach 0.48% improvement compared to PBS without any change of FLOPs and number of parameters.

γ F latness (%) Params (M) FLOPs (G) Top-1 Acc (%) Top-5 Acc (%)
0 0 5.4 0.60 75.37 92.23

0.25 10 5.3 (-0.1) 0.59 (-0.01) 75.34 (-0.03) 92.37 (+0.14)
2 41 5.5 (+0.1) 0.61 (+0.01) 75.26 (-0.11) 92.34 (+0.11)
8 75 5.5 (+0.1) 0.60 (+0.00) 75.60 (+0.23) 92.36 (+0.13)

32 92 5.4 (+0.0) 0.60 (+0.00) 75.85 (+0.48) 92.74 (+0.51)

Table 11. Searching performance of Accuracy + Flatness with different γ values, where searched on CIFAR-100 and transferred
onto ImageNet. Flatness (%) denotes the average ratio of Flatness compared to Accuracy during evaluation of architectures on
evolutionary searching algorithm. The quantities in the parentheses denote the amount of change compared to the γ = 0 case.

C.3.5. EFFECT OF PBS ON ABS.

We further analyze effect of integrating PBS on ABS in Table 12. Integrating PBS with a small proportion on ABS improves
top-1 accuracy of ABS. However, as the proportion of PBS increases, top-1 accuracy of searched architecture becomes to be
comparable or even degraded compared to that of ABS (γAcc = 0 case).

γAcc Accuracy (%) Params (M) FLOPs (G) Top-1 Acc (%) Top-5 Acc (%)
0 0 5.4 0.61 75.00 92.31

0.1 12 5.6 (+0.2) 0.62 (+0.01) 75.32 (+0.32) 92.38 (+0.07)
0.5 41 5.3 (-0.1) 0.59 (-0.02) 74.69 (-0.31) 92.05 (-0.26)
2.5 78 5.5 (+0.1) 0.61 (+0.00) 74.26 (-0.74) 91.67 (-0.64)
10 93 5.5 (+0.1) 0.61 (+0.00) 75.05 (+0.05) 92.13 (-0.18)

Table 12. Searching performance of Angle+Accuracy with different γAcc values (balancing parameter for Accuracy), where searched
on CIFAR-100 and transferred onto ImageNet. Accuracy (%) denotes the average ratio of Accuracy compared to Angle during
evaluation of architectures on evolutionary searching algorithm. The quantities in the parentheses denote the amount of change compared
to the γAcc = 0 case.



Neural Architecture Search with Loss Flatness-aware Measure

C.3.6. PERTURBATION METHODOLOGY.

To quantitatively measure flatness of loss landscape, all the weight parameters of a given network are perturbed with random
direction following Gaussian distribution as in Eq (7) in the manuscript. Here, we investigate the effect of perturbation
positions and directions. In Table 13, perturbing only weight parameters of target search cells (i.e. excluding stem conv layer
and final fully-connected layer) only harms Kendall’s Tau. Moreover, with regard to the perturbation directions, strongly
perturbing the given models’ parameters across the hessian eigen-vectors (Yao et al., 2019) suffers from a slight decrease of
Kendall’s Tau (Table 13) with large computational overhead induced by approximation of hessian.

Perturbation Position Perturbation Direction Kendall’s Tau

All Random 0.6047
Search Cells Random 0.5612 (-0.0435)

All Hessian 0.5908 (-0.0139)

Table 13. Ablation study of perturbation position and direction on CIFAR-10 with NAS-BENCH-201 search space. All denotes perturbing
all the weight parameters of a given network, while Search Cells denotes perturbing only weight parameters of search cells. The quantities
in the parentheses denote the amount of change compared to the default case (first row).


