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Abstract
We propose a modular architecture for lifelong
learning of multiple hierarchically structured
tasks. Specifically, we prove that our architec-
ture is theoretically able to learn tasks that can
be solved by functions that are learnable given
access to functions for other, previously learned
tasks as subroutines. We empirically show that
some tasks that we can learn in this way are not
learned by current modular lifelong learning or
end-to-end training methods in practice; indeed,
prior work suggests that some such tasks cannot
be learned by any efficient method without the aid
of the simpler tasks.

1. Introduction
How can complex concepts be learned? Human experi-
ence suggests that hierarchical structure is key: the com-
plex concepts we use are no more than simple combina-
tions of slightly less complex concepts that we have already
learned, and so on. This intuition suggests that the learn-
ing of complex concepts is most tractably approached in a
setting where multiple tasks are present, where it is possi-
ble to leverage what was learned from one task in another.
Lifelong learning (Silver et al., 2013; Chen & Liu, 2018)
captures such a setting: we are presented with a sequence of
learning tasks and wish to understand how to (selectively)
transfer what was learned on previous tasks to novel tasks.
We seek a method that we can analyze and prove leverages
what it learns on simple tasks to efficiently learn complex
tasks; in particular, tasks that could not be learned without
the help provided by learning the simple tasks first.

In this work, we propose an architecture for addressing such
problems based on creating new modules to represent the
various tasks. Indeed, other modular approaches to lifelong
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learning (Yoon et al., 2018; Rusu et al., 2016) have been
proposed previously. But, these works did not consider
what we view as the main advantage of such architectures:
their suitability for theoretical analysis. We prove that our
architecture is capable of efficiently learning complex tasks
by utilizing the functions learned to solve previous tasks as
components in an algorithm for the more complex task.

Such an analysis was provided in a machine teaching frame-
work by Rivest & Sloan (1988). The key differences are
that Rivest and Sloan required that the teacher present tasks
in the proper sequence, and that the tasks were very simple
combinations of previous functions, permitting the version
space to be explicitly represented. Our tasks are interleaved
and may require more complex representations in terms
of previous task functions. We achieve this by replacing
their version-space technique with recently developed robust
learning methods. We also consider methods for automati-
cally identifying whether a learning task posed to the agent
matches a previously learned task or is a novel task, which
was not addressed by Rivest and Sloan.

The key to our solution to both the task-identification prob-
lem and the complex compositions of tasks is a locality sen-
sitive hash (LSH) table based memory (Wang et al., 2021)
that holds sketches of data and modules or programs, which
can be viewed as an encoding of a small deep network, that
handle such sketches. All data – including external inputs
from the environment, outputs from a module such as classi-
fication or object detection, and decisions such as choosing
an action to take – are encoded as “sketches” as described
in (Ghazi et al., 2019; Panigrahy, 2019). Since a sketch is
processed by the module in the bucket to which it hashes,
the hash key can be viewed as a function-pointer and the
sketch captures the arguments for a call to that function.
New modules (or concepts) are then created by instantiating
a new hash bucket whenever sketches begin to frequently
hash to the same, new place. Complex compositions of
functions are obtained by repeatedly routing the sketches
produced as the outputs of modules back through the table,
to execute the next module indicated by the sketch.

We apply both our methods with a recent state-of-the-art
modular lifelong learning method (Ostapenko et al., 2021)
on two lifelong learning data sets where there exists hierar-
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chical dependence between tasks. These results show that
our methods can address hierarchical lifelong learning prob-
lems that are not well addressed by current lifelong learning
methods.

1.1. Related work

Recent work on lifelong learning focuses on learning com-
mon features that can be transferred between multiple tasks
encountered in a online fashion. We note briefly that a few
other works considered lifelong learning from a theoretical
perspective. An early approach by Solomonoff (1989) did
not seriously consider computational complexity aspects.
Ruvolo & Eaton (2013) gave the first provable lifelong learn-
ing algorithm with such an analysis. Another work (Cao
et al., 2021) on the theoretical aspect of lifelong learning
studies how to refine the common feature representations so
that the number of learned common features does not keep
increasing as the online algorithm goes. But, the transfer
of knowledge across tasks in their framework was limited
to feature learning. Balcan et al. (2015) attempt hierarchi-
cal lifelong learning, but they only considered a hierarchy
among linear models, which causes the hierarchy to collapse
into simply learning common linear features that reside in
a low-rank space. Most recently, Ostapenko et al. (2021)
introduces a state-of-the-art architecture with functional
components and structural components that allows dynamic
module composition based on local relevance scores.

2. Architecture for Hierarchical Learning: V1
Similarly to Rivest & Sloan (1988), we assume that the
structure of dependencies can be described by a degree-d
directed acyclic graph (DAG), in which the nodes corre-
spond to tasks. Each task t depends on at most d other tasks
t′1, . . . , t

′
d, indicated by the nodes in the DAG with edges

to its node, and the task is to compute the corresponding
function ϕ̂(t) = ϕ(t)(ϕ̂(t′1), . . . , ϕ̂(t′d)) where ϕ(t) ∈ M. If
t′1, . . . , t

′
d are sources in the DAG (no incoming edges) then

ϕ̂(t′i) ∈M. We assume that all tasks share a common input
distribution. We will call the functions fromM atomic mod-
ules, since they are the building blocks of this hierarchy. We
will call functions that call other functions in the DAG, such
as ϕ̂(t) above, a compound module. As before, we assume
M is a learnable function class. However, ϕ̂(t) might not
belong to a learnable function class due to its higher com-
plexity. Here, we will assume moreover that the algorithm
AM for learningM is robust to label noise. Concretely, we
will assume that if an ϵ-fraction of the labels are corrupted
by an adversary, then AM produces an O(ϵ)-accurate func-
tion. We note that methods are known to provide SGD with
such robustness for strongly convex loss functions, even
if the features are corrupted during training (Diakonikolas
et al., 2019) (see also, e.g., (Li et al., 2020; Shah et al.,

2020)). In this setting, we assume that the tasks are again
sampled uniformly at random, and that the data is sampled
independently from a common, fixed distribution for all
tasks.

We will maintain a global task level L, initially 0. We define
the target accuracy for level-L tasks to be ϵL = (2dC)Lϵ,
where C is the constant under the big-O for the guarantee
provided by our robust training method; we let ML denote
the sample complexity of robustly learning members of our
class M to accuracy 1 − CdϵL−1 with confidence 1 − δ
when a 1− dϵL−1-accurate model exists. We check if any
tasks became well-trained in level L − 1, and if so, for
all tasks that are not yet well-trained, we initialize mod-
els for all combinations of up to d − 1 other well-trained
tasks for each such new task. Each model is of the form
ϕ(ϕ̂i1(x), ..., ϕ̂ik(x)), where i1, . . . ik (k ≤ d) is the corre-
sponding subset of well-trained tasks such that at least one
has level L − 1. On each iteration, the arriving example
is hashed to a bucket for task t. We track the number of
examples that have arrived for t thus far at this level. For the
first M ′ examples that arrive in a bucket, we pass the exam-
ple to the training algorithms for each model for this task,
which for example completes another step of SGD. Once
ML examples have arrived, we count the fraction of the next
O( d

ϵL
log N

δ ) examples that are classified correctly by each
of the models. We thus check if its empirical accuracy is
guaranteed to be at least 1− ϵL with high probability. If the
empirical accuracy is sufficiently high, we mark the task as
well-trained and use this model for the task, discarding the
rest of the candidates. Once all of the tasks are well-trained
or have obtained ML + O( d

ϵL
log N

δ ) examples since the
global level incremented to L, we increment the global level
to L+ 1.

Lemma 2.1. Suppose at each step, a task t is chosen
uniformly random from the set of tasks {t1, . . . , tN} in
a DAG of height ℓ, along with one random sample (x, y)

where ϕ̂(t)(x) = y. Then after ℓMN ln(1/δ) steps all
the tasks will be well-trained (training error rate ≤ ϵL
for each module at level L) w.h.p. We will call SGD
O(ℓMN (1+d) ln(1/δ)) times during the training. Here, M
is the upper bound of all ML.

We stress that in contrast to previous works in lifelong learn-
ing, our goal here is to efficiently learn tasks that would
be intractable to learn in isolation, rather than reducing the
sample complexity of learnable tasks.

3. Architecture for Complex Tasks Without
Explicit Descriptions: V2

Almost all work on continual learning assumes that an ex-
plicit task identifier (ID) is given along with each example.
Recent work by Ostapenko et al. (2021) considered a frame-
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work that where task IDs are given at the training time, but
must be inferred at test time. However, their identification
method uses heuristics such as estimating a task likelihood
by the error of an autoencoder reconstruction of the input
features. In this work, we propose a method to infer the task
ID assuming that the input is structured as a sketch (Ghazi
et al., 2019) (which may be achieved by preprocessing).
This method does not require an explicit task ID to be given
during training or testing and can be theoretically analyzed.

Algorithm 1 the main execution loop
Input: sketch T (may contain a desired output for training)

1 current-sketches← {T}
2 while current-sketches is not empty:
3 current-programs← ∅
4 foreach sketch S in current-sketchesdo
5 extract context C = f(S)
6 update access-frequency-count of bucket h(C)
7 if bucket h(C) has a program P :
8 append (S, P ) to current-programs
9 else:

10 if bucket h(C) is frequently accessed:
11 initialize program at h(C) with some ran-

dom program and mark it for training.
12 Fetch programs Pi (possibly by some sim-

ilarity criterion), append those (S, Pi) to
current-programs

13 Routing module chooses some subset of
current-programs, runs each program
on its associated sketch, appends outputs to
current-sketches

14 Append sketches on outgoing edges of accessed buckets
to current-sketches

15 if any of the programs are marked for training:
16 routing module picks one or some of them and trains

them, and may choose to stop execution loop
17 if any of the sketches is of (a special) type OUTPUT

sketch:
18 routing module picks one such, outputs that sketch

or performs that action, and may choose to stop
execution loop

19 if any of the sketches is of type REWARD sketch (say for
correct prediction or action):

20 updates the reward for this bucket and propagates
those rewards to prior buckets

21 Routing module picks k combinations of sketches in
current-sketches, and combine them into com-
pound sketches: S1, . . . , Sk (may produce 0 sketches)

22 current-sketches← {S1, . . . , Sk}

3.1. Sketch data structure

A sketch (Ghazi et al., 2019) is a compact representation
of a possibly exponentially-wide (d×N ) matrix in which
only a small number k of the columns are nonzero, that
supports efficient computation of inner products, and for
which encoding and decoding are performed by linear trans-
formations. For our purposes, we suppose there exist mod-
ules M1, . . . ,MN that pre-processed the data and produced
vectors x1, . . . , xN ∈ Rd as output, where only k of the
modules produce (nonzero) outputs. We view the sparse col-
lection of module outputs as a small set of key-value pairs
of the form {[Mi1 , xi1],. . . ,[Mik , xik ]}. We can apply a
randomized linear transformation to encode this as a dense
vector S, and can also retrieve the set of key-value pairs by
using another linear transformation. Therefore, although
sketches have a dense (vector) representation, they can also
be interpreted as kind of structured representation with mul-
tiple fields. All these fields together, or equivalently the
dense sketch vector representation of the input, can be seen
as containing a latent task description along with irrelevant
information.

3.2. Context function f as a decision tree

Both the latent circuit and projection can be learned in a
similar way, as a decision tree. For simplicity, let’s consider
how a projection f can be implemented and learned as a de-
cision tree. We are given an input sketch S, which is in turn
equivalent to a set of fields [S1, .., Sk] where each field may
itself be viewed as a sketch. We assume the sketches are
ordered by importance (e.g., based on frequency: if there are
m hash buckets we will only track contexts that appear at
least O(1/m) fraction of the time, while others get “timed
out“ – we assume m ≥ G2O(d2+d log(N/d))), where G is
the total number of unique implicit task descriptions. We
apply f recursively and then over f(S1), .., f(Sk), from left
to right, in a decision tree where each branch either keeps
or drops each item and stops or continues based on what
obtains the highest rewards, tracked at each node (subtree)
of the tree. We learn the probabilities for all the branching
choices over time. Here the reward is defined in the follow-
ing way. Each branching path will lead to a specific context
which points to a bucket, so in parallel, the algorithm will
allocate each sample in all these buckets accordingly and
train a model in each bucket using the samples in it. De-
pending on whether the trained model has passed the error
threshold ϵL as in Sec. 2 at the end of the branch, it will
receive a reward and propagate it back. Thus the context
function can be implemented as a recursive call to a decision
tree f([S1, .., Sk]) = DecisionTree([f(S1),..,f(Sk)]) —each
node of the decision tree will be implemented in a separate
module (hash bucket).

Our main result for this section is the following:
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Algorithm 2 Probabilistic routing algorithm

Input: Batches of {(k, xk
i , y

k
i )}i∈[B].

Constants: patomic, pcompound.
Initialization: Set of modules Φ = ∅.
Repeat the following steps:
1. w.p. patomic, train an atomic module ϕk that maps
xk
i to yki (note we keep a separate copy of ϕk for each

different DAG structure based on iteration choices in
step 2 from the original input to xk

i ). If training succeeds,
set ϕ̂k to be the DAG upto ϕk and add it to Φ.
2. w.p. 1 − patomic, for each ϕ̂ ∈ Φ, w.p. pcompound,

set xk
i ← concat(xk

i , ϕ(x
k
i )).

Return Φ.

Figure 1: Intersection of halfspaces Left: Pseudocode for hierarchical modular approach. Right: Hierarchical modular
approach continues to have good accuracy while LMC behaves similar to the end-to-end approach that fails to learn for
K ≥ 7.

method accuracy steps (1-digit) steps (segmentation) steps (5-digits)
end-to-end 74.5± 4.5 % NA NA 18760

LMC 86.1± 1.7 % NA NA 18760
hierarchical modular 92.0± 0.5% 2560 640 18760± 9380

Table 1: Comparison of end-to-end and modular algorithms for 5-digits recognition: accuracy and number of training steps
for different tasks.

Theorem 3.1 (Learning DAG using v2). Given a latent
dependency DAG of tasks over N nodes and height ℓ, and a
circuit per internal node in the DAG, there exists an archi-
tecture v2 that learns all these tasks (up to error rate ϵL as
defined in Sec.2) within O(ℓGM2O(d2+d log(N/d))) steps.

4. Experiments
We use common datasets to compare our hierarchical modu-
lar method with a state-of-the-art modular lifelong learning
method LMC (Ostapenko et al., 2021), and a standard “end
to end” learning approach. For all the LMC baselines, we
used depth 8, hidden size 384 and learning rate 0.0001, after
hyperparameter tunning.

Based on these experiment results, we empirically show that
there existing problems that has not been well-addressed by
state of the art modular lifelong learning method, while our
hierarchical modular approach can perform better.

4.1. Learning intersections of halfspaces

Learning intersections of halfspaces has been studied ex-
tensively, see for example (Klivans & Sherstov, 2009). We
first describe the experiment setting. Let K be the num-
ber of hyperplanes, D feature space dimension, we gener-
ate the following data: hyperplane coefficients wk ∈ RD,
k = 1, 2, ...,K whose components are independent and

follow standard normal distribution; feature xi ∈ RD,
i = 1, 2, ..., N , independently chosen uniformly from
[−1, 1]. And we have yi =

∏
k∈[K] sgn(wk · xi), where

sgn is the sign function.

The results are plotted in Figure-1, We observe for large K
(K ≥ 7 in the figure), the end-to-end approach fails at the
task while the modular approach continues to have good
performance. Surprisingly, LMC performs similarly to the
end-to-end approach.

4.2. Five digit recognition

In this experiment, we compare the “end to end” approach
and a modular approach for the task of recognizing 5-digit
numbers, where the input is an image that contains 5 digits
from left to right, and the expected output is the number that
is formed from concatenating the 5 digits. Note in this task,
we have 3 sub-tasks: task-1 is single digit recognition, task-2
is image segmentation, and task-3 is 5 digit recognition.

The results of the two approaches are compared in Table-
1. We observe the hierarchical modular approach achieves
higher accuracy and has less variance with the same training
steps.
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A. Locality Senstive Hashing
Locality Sensitive Hashing (LSH) is a popular variant
of hashing that tends to hash similar objects to the same
buckets. Let us look at an LSH that maps an input to one
(or a few locations) out of the m hash buckets. It is well-
known that LSH provably provides sub-linear query time
and sub-quadratic space complexity for approximate near-
est neighbor search. More specifically, fix 0 < r1 < r2,
where r1 is the threshold for nearby points, and r2 is the
threshold for far-away points, i.e. for x, y ∈ Rd, we say
x and y are nearby if |x− y|2 ≤ r1 and they are far-away
if |x − y|2 ≥ r2, where |x|2 is the 2-norm of the vector
x. Let c = r2/r1 > 0 denote the distance gap as a ra-
tio. Let p1 ≤ Pr(h(x) = h(y) : |x − y|2 ≤ r1) and
p2 ≥ Pr(h(x) = h(y) : |x − y|2 ≥ r2) denote lower and
upper bounds on the collision probability of nearby points
and far-away points, respectively. Define ρ = log(1/p1)

log(1/p2)
.

Then LSH-based nearest neighbor search has a O(nρ) query
time and O(n1+ρ) space complexity for a c approximate
nearest neighbor query (???).

One example LSH function uses random hyperplane based
LSH (?) to map a vector into a hash bucket, although other
types of hashing such could be used as well – for example
min-hash (?) could be used on a set or a tuple object to map
that object to a discrete hash bucket.

B. Architecture
B.1. Sketches Review

Our architecture relies heavily on the properties of the
sketches introduced in (Ghazi et al., 2019). In this sec-
tion we briefly describe some of the key properties of these
sketches; the interested reader is referred to (Ghazi et al.,
2019; Panigrahy, 2019; Wang et al., 2021) for the full de-
tails.

A sketch represents any event, an input or an output at a
module. It may represent an “object” that may recursively
contain a (unordered)set or a (ordered)tuple of sketches.

Any input or output of a module can be represented by
a sketch. For example an input image has a sketch chat
can be thought of as a tuple [IMAGE, ⟨ bit-map-sketch ⟩
]. An output by an image recognition module that finds a
person in the image can be represented as [PERSON, [⟨
person-sketch⟩, ⟨ position-in-image-sketch⟩]); here IMAGE,
PERSON can be thought of as a “labels”. However the
sketch may be more complicated like an object for exam-
ple the ⟨person-sketch ⟩could in turn be set of such pairs
{[NAME,⟨name-sketch ⟩], [FACIAL-FEATURES,⟨facial-
sketch ⟩], [POSTURE,⟨posture-sketch ⟩]}. Thus a sketch
could be represented as a tree. Further there may be com-
pound sketches that consist of a set of sketches. For exam-

ple an image consisting of multiple people could be a set
{⟨person-1-sketch ⟩, ⟨person-2-sketch ⟩,..,⟨person-k-sketch
⟩}.

Sketches can be used to backtrack the chain of modules
that produced it: An output sketch may also recursively
point to the input sketch and the modules it came from, e.g.
recursive-sketch(output) = {[OUTPUT-SKETCH,⟨output-
sketch ⟩], [MODULE-ID,⟨module-id ⟩], [RECURSIVE-
INPUT-SKETCH, ⟨recursive-input-sketch ⟩]}. By keeping
recursive-input-sketch to some depth, we can find find the
entire tree or DAG of modules that produced this output
sketch. A method for representing such structured sketches
as a dense vector using subspace embeddings (each object
sketch is embedded into a random subspace for that type
of object) is provided in (Ghazi et al., 2019). There is way
to sketch the outputs of a modular network so that similar
finding lead to similar sketches; the main idea is that similar
input phenomena will cause almost the same set of modules
to fire with similar output embeddings. See Theorem 2 of
Ghazi et al. (2019).

Types are encoded in subspaces: An object of a particular
“type” is represented by a sketch that embeds it in a specific
random subspace that uniquely determines the type. A set
of “type, value” pairs can be sketched by packing each
type in a separate subspace by using random matrices (the
actual distribution is more complicated to prove stronger
robustness guarantees see Theorem 1 of Ghazi et al. (2019)).

Dense representations of sketches: As described above,
an object containing sub-objects of types T1, T2, T3 can
be represented by the set s = {[T1, s1], [T2, s2], [T3, s3]}
where s1, s2, s3 are sketches of the sub-objects. In (Ghazi
et al., 2019) a method is given for converting this into a
dense representation r(s), which we summarize here.

A dense representation r(s) of this can be obtained recur-
sively as r(s) = RT1r(s1) +RT2r(s2) +RT3r(s3) where
the R′s are random matrices that depend on the type Ti

with output dimension large enough to recover the sub-
sketches. The R is drawn from a distribution given by
(I + R′)/2 where R′ has mean 0 (the exact distribution
can be found in (Ghazi et al., 2019)). This ensures that
r(s) has some similarity to r(s1), r(s2), r(s3). Thus a com-
pound sketch has some “similarity” to each of its compo-
nents. A sketch is recursive in the sense that it is a com-
pound sketch of all its components/subtrees – lower level
subtrees get exponentially decreasing weight (see (?)The-
orem 1]ghazi2019recursive). Any component sketch with
high enough weight can be recovered. Further those with
weights below a threshold may be retrieved from buckets in
the hash table (see section B.1.1). Also, from the compound
sketch of a large number of sketches the average value of
the component-sketches can be recovered (see Claim 5 in
(Ghazi et al., 2019)). A tuple [s1, s2, s3] can simply be
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thought of as the set {[1, s1], [2, s2], [3, s3]}.

A set of sketches of the same type can be sketched by using
a local LSH table. The set of sketches landing at each bucket
is sketched recursively. This gives an array of sketches. The
sketch of this array is the final sketch.

Note if the if the set very large, we will not be able to
recover the sketch of each of its members but only get a
“average” or summary of all the sketches – however if a
member has high enough relative weight (see (?)Section
3.3]ghazi2019recursive) it can be recovered.

B.1.1. STORING LARGE OBJECTS

Large objects such as long strings can be stored as
compound-sketch that is sketched recursively into smaller
and smaller sequence of sketches. Memory of a sequence
of events can be stored as sketches in buckets that link to
each other that can be retrieved later when it needs to be
replayed. A string of length n can be sent to a CNN that
uses patches of size s with stride of s/2, producing 2n/s
patches and their corresponding sketches. These sketches
may be stored in a hash table. These 2n/s patch sketches
could further be sketched in the same way till we get a single
compound sketch at the top. This “tree” of sketches can be
implicitly stored in a hash table. The final top sketch serves
as a summary of the entire string – it can be used to find
substrings that have very high frequency – for example if a
patch occurs a large fraction of times that can be inferred
from the top level sketch even without looking at the rest
of the sketches in the tree. The sketch of a large object can
implicitly be used as a pointer to that object.

Programs can also be viewed as strings of instructions or
strings of matrices. By using the above method large pro-
grams can be stored and accessed in the hash memory.

B.2. Architecture Principles

The following generalizes the architecture principles and al-
gorithm 1 to include knowledge graph edges that keep track
of frequent associations (see Appendix F for applications of
such associations and Appendix E for RL applications)

1. Sketches.

• All phenomena (inputs, outputs, commonly co-
occurring events, etc) are represented as sketches.

• There is a function from sketch to context f : S →
C that gives a coarse grained version of the sketch.
This is obtained by looking at the fields in the
sketch S that are high level labels and dropping
fine details with high variance such as attribute
values; it essentially extracts the “high-level bits”
in the sketch S.

2. Hashtable indexed by context that is robust to noise.

• The hash function h : C → [hash-bucket] is “lo-
cality sensitive” in the sense that similar contexts
are hashed to the same bucket with high probabil-
ity.

• Each hash bucket may contain a trainable pro-
gram P , and summary statistics as described in
Figure 2. We don’t start to train P until the hash
bucket has been visited a sufficient number of
times. (Note: A program may not have to be an
explicit interpretable program but could just be an
“embedding” that represents (or modifies) a neural
network.)

3. Routing-module (OS).

• Given a set of sketches from the previous iteration,
the routing module identifies the top ones, applies
the f function followed by h to route them to
their corresponding buckets. Before applying f it
may use attention to combine certain subsets of
sketches into a compound sketch.

4. Knowledge graph of edges.

• Information about frequently co-occurring
sketches (e.g. if sketch S1 is frequently followed
by sketch S2) is stored as edges connecting hash
table buckets that form a knowledge graph.

• When the routing module visits a bucket, in ad-
dition to the program P , it can also extract the
sketches on the outgoing edges at that hash bucket.
One could also view the program P as the “default
edge” at that bucket.

The system works in a continuous loop where sketches are
coming in from the environment and also from previous
iterations; the main structure of the loop (recall Figure 3) is:

Phenomena sketch context bucket program Phenomena
input f h

produces

output

Our architecture can be viewed as a variant of the Trans-
former architecture (??), particularly the Switch Trans-
former (?) in conjunction with the idea of Neural Memory
(Wang et al., 2021). Instead of having a single feedforward
layer, the Switch Transformer has an array of feedforward
layers that an input can be routed to at each layer. Neural
Memory on the other hand is a large table of values, and one
or a few locations of the memory can be accessed at each
layer of a deep network. In a sense the Switch Transfomer
can be viewed as having a memory of possible feedforward
layers (although they use very few) to read from. It is view-
ing the memory as holding “parts of a deep network” as
opposed to data, although this difference between program
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and data is artificial: for example, embedding table entries
can be viewed as “data” but are also used to alter the com-
putation of the rest of the network, and in this sense act as a
“program modifier”.

New modules (or concepts) are formed simply by instantiat-
ing a new hash bucket whenever a new frequently-occurring
context arises, i.e. whenever several sketches hash to the
same place; the context can be viewed as a function-pointer
and the sketch can be viewed as arguments for a call to that
function. Frequent subsets of sketches may be combined
based on attention to produce compound sketches. Finally
we include pointers among sketches based on co-occurrence
and co-reference in the sketches themselves. These pointers
form a knowledge graph: for example if the inputs are im-
ages of pairs of people where the pairs are drawn from some
latent social network, then assuming sufficient sampling of
the network, this network will arise as a subgraph of the
graph given by these pointers. The main loop allows these
pointers to be dereferenced by passing them through the
memory table, so they indeed serve the intended purpose.

Thus external inputs and internal events arrive as sketches
that are converted into a coarser representation using the f
function that gets mapped to a bucket using hash function h;
the program at that bucket is executed to produce an output-
sketch that is fed back into the system and may also produce
external outputs. This basic loop is executed by the routing-
module which can be thought of as the operating-system
of the architecture. In each iteration the routing-module
gathers the sketches output from the modules executed in
the previous rounds, along with the input sketches from
the environment and retains the top k based on some no-
tion of weight/importance (this could be a combination of
frequency and rewards, which is tracked in the buckets corre-
sponding to the sketches). It may also use attention to com-
bine certain subsets of these. These are then routed using
the f followed by the h function to their respective modules
in the hash buckets. The programs in these buckets execute
the corresponding sketches producing new sketches (these
new sketches may also produce outputs or actions into the
environment) that are sent back into the current collection
of sketches. Each bucket also tracks other co-occurring/co-
referenced sketches which may also be retrieved when that
bucket is visited. In Algorithm 3 we have under-specified
and left out how the routing module makes the discrete
choices. We will show a simple method is to implement it
as a decision tree that makes probabilistic choices that even-
tually converge to an optimal set of deterministic choices
(see DecisionTree Algorithm.5).

Hash function h: The hash function h is an LSH function,
so similar contexts are hashed to the same bucket. When
the model encounters a sketch whose context is unfamiliar
(i.e. is sufficiently far away from any existing contexts) a

Frequency of access

Average reward (or compound sketch of 
rewards) after visiting this bucket 

Program-sketch to be executed for this 
bucket

List (or compound sketch) of top 
co-occurring/co-referencing other buckets

Average/compound-sketch of sketches 
mapping to this bucket

Figure 2: Fields in a hash bucket, including the program-
sketch (if it exists), pointers to related buckets, and summary
statistics such as frequency of access. The average or com-
pound sketch of all the sketches mapping to this bucket can
be used to identify the different frequent pathways that led
to this bucket. The average or compound sketch of all the
rewards-sketches can be used to identify the different fre-
quent pathways from this bucket that lead to rewards and
their reward values.

new hash bucket is instantiated for that context. Each bucket
contains (see Figure 2):

1. The program P which is a learned a function, e.g. a
trainable neural net, for that bucket.

2. summary statistics, e.g. frequency counter, re-
ward/quality score.

3. summary of sketches that point to this bucket. The
summary could be a compound sketch of things map-
ping here. Note that the compound sketch contains
information about the average value (see Claim 5 in
(Ghazi et al., 2019)).

4. local information about the knowledge graph, e.g. out-
going edges from that bucket.

Handling hash bucket collisions from h: To handle col-
lisions, if instead of using one hash function h if we use r
of them (for some integer r ≥ 1) then with high probability
for each sketch there will be at least one distinct bucket (in
fact at least a constant fraction will be distinct) as long as its
context is far enough from that of all others. In case many
similar contexts hash to the same bucket, the that bucket will
have a high frequency count. In that case when the routing
module encounters such a bucket, it could use additional
LSH bits to rehash such sketches to new buckets which is
likely to put them into different buckets – this could be re-
peated until we get to buckets that have bounded frequency
counts.

Task: A task refers to logically coherent subset of training
examples from the external world with a specific processing
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to be applied to each of those examples to produce a desired
output for each of them. For example in the simplest case
each example may come with a specific task-description
sketch or identifier that specifies the task. However the
task description may not be explicit in the input, but may
be identified after routing the input through a sub-dag of
modules. Each task maps to a unique context which is
determined by applying the f function on the sketch at
some level.

Learning the program in a bucket: Each bucket contains
a trainable function from a certain class (such as neural
networks of a fixed small depth). More generally it could
represent a vectorized “embedding” that modifies another
global network or produces another network. This function
may depend on the output of other buckets as prerequisite
inputs.

Module: A module refers to a program in a bucket. This
may either be an atomic Module or a compound Module
that can call other atomic or compound modules (thus it
is a sub-dag over other modules). Thus a compound mod-
ule in a bucket may recursively “call” functions in other
buckets realized as a frequently seen computation DAG of
sketches flowing through modules. For example the entire
architecture can be thought of as one giant compound mod-
ule defined by the initial module where all input sketches
are sent (think that there is some default “boot” module
where all inputs are sent; this boot module iteratively calls
the routing module and modules in the hash buckets where
derived sketches get routed – note that iterative calls can
also be implemented as a tail recursion where the first itera-
tion recursively hands off the processing for the remaining
iterations.

As the routing module explores, it records sequences of
modules that led to high reward at this bucket by sketching
the path and storing it as an outgoing edge in the knowledge
graph. Over time, this edge “hardens” into the default path
for this task: it becomes so high weight compared to the
other edges that f automatically focuses on it and follows it
deterministically. We call this the “program” for this bucket.

Attention: We use “attention” in a very broad sense, mean-
ing not just the mechanism as it appears in e.g. transformer
architectures but more generally as a method of combining
sketches based on pairwise similarity and/or relevance into
a weighted tuple/set. We could use attention to extract com-
ponents from one sketch based on another sketch and/or
edges between their buckets. This attention can be used for
example to connect the spoken name of a person to their
image in a group photo via an edge in the knowledge graph
that captures the frequent co-occurrence of the spoken name
with the face. For example, imagine a picture of many peo-
ple with one of their names being spoken. First the picture
goes to visual module, which identifies that there are faces

and sends it to facial-recognition module; this finds multiple
familiar faces, and the bucket of one of these faces has an
existing outgoing edge pairing it with the audio of the name.
The similarity between these sketches is reflected in the
weights generated by the attention module and the result is
a combined sketch connecting this face in the picture with
the audio input.

Routing module: The routing module applies function f
that maps sketches to context followed by hash function h
that maps the context to a bucket. The function f can be
viewed as extracting a coarse representation of the sketch
by extracting stable fields such as labels and dropping high
variance ones. Since there may be several options in de-
signing f for a certain type of sketch, there may be some
exploration where it makes probabilistic choices and later
converges to a specific choice. For example there may be
some probabilistic choices at each step regarding which
components of a sketch to keep before routing the sketch
to a hash bucket. For now we assume that routing module
starts with a very simple set of rules and refines its probabil-
ity distribution for each bucket over time based on success
or failure of its choices (e.g. whether the loss score for that
example is below some threshold).

We start with a very simple definition of the function f in
version v0 (section ??) that simply drops certain fields in the
sketch. In section E.4 we show how this can be formalized in
the framework of our architecture by viewing this operation
that picks a subset of the fields in an input sketch as yet
another modular decision tree task by using sub-modules.

Knowledge graph: The knowledge graph is implicitly
forms by the pointers from a bucket to other frequently
co-occurring buckets – if there are too many such we may
retain only the top few in addition to storing a compound
sketch of the co-occurring sketches. Although in the ar-
chitecture principles we said that knowledge graph edges
are formed by buckets of frequently co-occurring sketches
S1, S2 pointing to each other, we can also achieve this
by simply creating a compound sketch for the frequently
co-occurring pair [S1, S2] and having edges between co-
referencing sketches [S1, S2] and S1, S2 each; thus all edges
would be co-referencing edges. [[Rina: make this precise.
into a definition]]. Thus by simply creating compound
sketches and having pointers between the compound sketch
and the component sketches and vice versa we automati-
cally capture frequent co-occurence – note that any sketch
(including compound sketches) are persisted in hash buck-
ets only when they occur with a frequency that exceeds a
certain threshold (see details in a few paragraphs below)

Mature and immature buckets: For simplicity we may
think of some buckets whose quality score is above a certain
(user-defined) threshold as mature bucket that are marked as
“well trained”. The parameters of the bucket’s function may
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still be updated and further refined as new sketches arrive,
but its main program is frozen and no further exploration
is required in terms of solidifying choices of the routing
module (say for the f -function) in handling sketches that
map to this bucket. An immature bucket is one that is not
fully trained: the routing module may not have found a
good sequence of modules for this task yet, may not have
figured out good choices for routing sketches and applying
the f function for sketches that map to this bucket, and/or
the program in the bucket may not have been fully trained.
Other modules cannot call an immature module as part of
their program.

Backpropagation: The parameters of the neural net in a
bucket are updated whenever the example is evaluated in
that bucket, that is whenever the routing module decides to
stop exploring and train in that bucket. If the loss in the
bucket is below some threshold then the knowledge graph
is also updated, with a copy of the sketch being recorded
as a co-occurring sketch for all modules in the execution
pathway.

Distinguished modules: We assume that the architecture is
provided with certain basic “hardcoded” modules where nec-
essary, for example specialized audio and image processing
modules with pre-trained CNNs to extract raw audio-visual
data and embed it into a representation space. This is by
analogy to humans, who have to learn to interpret data from
their senses but don’t have to evolve from scratch the con-
cept of eyes. We may also assume the existence of an “input
module” that is the first module where all external inputs
such as images, audio, text are first routed to. This mod-
ule may separate modalities from the input sketch which
may individually get routed to specific modules to process
images, audio, text separately. The modules for processing
images, audio may in-turn find text in the images, sounds
and that text may get routed to text module.

Only frequent contexts are persisted: If there are m hash
buckets in the LSH table we will only track contexts that
appear at least with frequency O(1/m), while others get
“timed out” and eventually forgotten as they will not appear
with sufficient frequency – we assume m is at least the num-
ber of distinct contexts that need to be trained to correctly
learn all the tasks. Note that this tracking of frequency of
persistent and ephemeral contexts to ensure we catch any-
thing with frequency at least O(1/m) can be done in a total
of Õ(m) buckets – one way to achieve this is to simply drop
(time-out) from the system any context that does not appear
within a time interval of Õ(m); clearly, this way only Õ(m)
contexts are ever in the system at any one time.

A tail recursive view of the execution loop: We can think
of a tail recursive variant of Algorithm 3 where the loop is
replaced a recursive call to itself at the end. In this case,
the inside of the loop “foreach sketch S” is replaced by a

recursive call to Algorithm with input S . This recursive
view is also useful for analysis in certain cases. In some
cases the algorithm may execute only the content inside the
foreach loop involving applying the f and the h functions
on the input sketch which could correspond to executing the
leaf level of the recursion. The depth of the recursion (or
the number of iterations) may be capped at some upper limit
to prevent infinite loops. (Also see section I for a recursive
view of a compound module)

C. Architecture v0
Claim C.1. Given an error rate ϵ > 0 and confidence
parameter δ > 0 and n independent tasks, each of which
require at most M = M(ϵ, δ) examples to learn to accuracy
1− ϵ with probability 1− δ, and training data as described
in above, with probability 1 − (n + 1)δ, Architecture v0
learns to perform all n tasks to accuracy at least 1 − ϵ in
O(Mn log n

δ ) steps.

Proof. This follows from the fact that the problem essen-
tially breaks down into n separate supervised learning tasks.
In the learning algorithm we simply route each sample us-
ing f and h to its corresponding task according to its task
descriptor and use the learning algorithm AM to train the
function m̂t in the corresponding hash bucket. The algo-
rithm for v0 falls into the framework of Algo.1. However, f
and h are restricted and other routing module operations be-
come NO-OP. Because in v0 the tasks are independent.

Here, we assumed that each task has a fixed, unique task
descriptor. Using the locality-sensitive hash function, it
is straightforward to extend v0 slightly to the case where
each task is represented by noisy but well-separated task
descriptors.

Noisy contexts: Although we have been thinking of con-
texts as precise and fixed for a task, We can also relax the
assumption that the context of a task should be identical
each time, instead allowing some noise in the contexts. Our
architecture can handle noisy contexts as we use an LSH ta-
ble; we can easily replace the LSH-function with an r-LSH
that makes r different hash function for some r. Now each
context accesses r buckets, and programs can be encoded
in a distributed/replicated fashion to render the contexts ro-
bust to noise. The following two Theorems show how the
relevant information for a context can be stored in a dis-
tributed robust manner (like in an error correcting code) so
that even having access to a fraction of the locations where it
is encoded is sufficient to correctly recover the information
– this allows us to index the information using a ”corrupted”
version of the context.

Assumption: Suppose there is desired sketch v∗ and the
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noise procedure that produces v such that:

v ∼ N (v; v∗, diag(β)) .

Theorem C.2. If there is a ball of points of radius δ in sketch
space so that all those points should go to the same program
then for r ≥ nO(δ) the program will get programmed in any
of the several hash locations the points map to (as long as
the points are picked randomly) from the ball.

Proof. Since we are using a locality sensitive hash table
if we use r-LSH functions, the context doesn’t need to
point to the same set of buckets – but as long as there is at
least one common bucket it can retrieve the program. LSH
guarantees that as long as the contexts C and C ′ are within
δ distance, they will go to the same bucket with probability
at least n−O(δ). So if r ≫ nO(δ) with high probability
there will be an intersection. During inference we can look
at all the non-empty buckets and take the average of the
programs stored in all those buckets. During training if we
add a regularizer that minimizes the sum of the norms of
the program vector representation, then all the programs
in the r-buckets will go to the same value. Thus if a task
is trained using large number of hashed buckets then it is
highly resilient to change in context as all that is needed is
for a few of the hash locations to intersect. This proves the
Theorem.

Thus even though the different contexts go to different sets
of buckets those buckets contain the same program; this
program sketch now becomes an identifier/common-sketch
for this unique common context across these noise contexts.

Distributed storage of programs: In fact, a program need
not fit entirely in one bucket but may be assembled in a
robust manner from the r-buckets. Thus a program may
be stored across multiple hash buckets so that any small
subset of them could be used to recover the program. Let
us say the program is sp and the amount of program-field
in each bucket is sb. We will show how from a random
subset of l out of the r-buckets for this context is sufficient
to assemble the program as long as l > Ω̃(sp/sb). The
main idea is to associate each bucket i with a random sparse
rotation matrix Ri. Then if a large set of r locations are
trained to store a particular program y, any small subset
{i1, .., il} of those locations may be sufficient to read y.
That is, y = (Ri1xi1 + ..+Rilxil)/l where xi is the value
stored at bucket i. This idea may also be used to store a
program in a distributed fashion across entirely different
contexts.

Theorem C.3. There is a way to store a program y in a
distributed manner across r buckets so that any random
subset of l of these buckets can be used to reconstruct the y,
as long as l > Ω̃(sp/sb).

Proof. First look at the case where sp = sb. For simplicity
think of each rotation matrix as identity. Then we will show
that at local minima all program-pieces Rixi are identical.
This is achieved by adding a regularizer that minimizes the
sum of the norms of the program pieces Rixi in the different
buckets. The same argument holds if the matrices are full
rank.

If sp > sb first lets look at the limiting case when sb = 1.
So we are taking a set l numbers and using it to get an sp-
dimensional vector y. This can be done by using a random
sparse sp × 1 matrix Ri for bucket i and then averaging
across the l buckets; Ri is a binary vector with exactly one
1 at a random coordinate, so when Ri is when multiplied
by a (scalar) input x it puts it into a random coordinate
of the output and keeps others zero. Now if we take l ≥
Ω̃(sp) such Ri matrices with high probability, each of the
sp coordinates will be 1 in some of the Ris. Thus in terms
of representation, one can store the specific co-ordinate of y
in all the xi (scaled by l) where Ri has a 1 in that coordinate.
Now the expected value of the average assembled from l
buckets will be y in expectation – high concentration can be
achieved by making l sufficiently large. Thus a specific co-
ordinate of y is stored in 1/sb fraction of the buckets. It can
also be ensured that this happens during training by using
regularization; the regularization will force all the values in
such buckets to be equal and identical to the desired value
of that coordinate in the program. The exact same argument
extends to the case when sb > 1 except that now Ri is a
sp × sb random matrix where each column has exactly one
1 in a random position.

Programs may modify a global-program: So far we as-
sumed that all the n tasks are independent. However instead
we could have a global-program so that all variants of that
global task that is already available. Note that the main al-
gorithm loop states that a program in a bucket is initialized
from a program in the nearest non-empty context bucket.
If we assume that the global-program is in a bucket that
is nearest to a new bucket then it will automatically start
from there. Further note that we may not even need to copy
the entire program to the new bucket, but simply train the
delta (modification) there; thus in the new bucket we would
store a pointer (sketch) to the global program and the delta
represented as a vector. This gives the following claim.

Claim C.4. Claim C.1 holds even if all n tasks are derived
from a global task.

D. Architecture v1
This version will be used to learn a (latent) DAG of tasks
where each task corresponds to the subtree rooted at a node.
There is a (learnable) function at each node that recursively
takes inputs the outputs of its child nodes. We show how
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this DAG (or an equivalent) one gets automatically learned
in our architecture. The main argument is inductive where
we show that the function at each node (or its equivalent)
gets programmed at some bucket in our LSH table. The key
challenge is in figuring out exactly which tasks are the child
tasks for a new task to learned. In the worst case this can be
done by trying all possible

(
N
d

)
subset of d nodes. In practice

there may be hints in the input that can used to narrow the
search space in to a smaller set of candidates. Section E.4
shows how this can implemented using a modular decision
tree that itself fits well within our architecture.

Lemma D.1. Suppose at each step, a task t is chosen
uniformly random from the set of tasks {t1, . . . , tN} in
a DAG of height ℓ, along with one random sample (x, y)

where ϕ̂(t)(x) = y. Then after ℓMN ln(1/δ) steps all
the tasks will be well-trained (training error rate ≤ ϵL
for each module at level L) w.h.p. We will call SGD
O(ℓMN (1+d) ln(1/δ)) times during the training. Here, M
is is the upper bound of all ML.

Proof. The learning algorithm follows the framework of
Alg. 1. Let t′ be the one of the tasks that t depends. Then
we have that

Pr[t does not appear τ steps after t′] = (1−1/N)τ ≤ e−τ/N .
(1)

Therefore, after t′ is well-trained, if we wait for at least τ =
N ln(1/δ), with probability 1 − δ, t will appear. Without
loss of generality, we can assume that t′ is the the last
sub-module task of t that gets well-trained. Then after τ
steps the training for t becomes useful because we can call
these well-trained sub-modules. Note that the probability in
Eq. (1) applies to any time step, so after the first t arrives,
if we wait for another τ steps, t will appear again. Suppose
M is the amount of data that is needed to train function
m ∈ M, then after Mτ = MN ln(1/δ) steps t can be
well-trained w.h.p. Since we know that basic tasks can be
trained without calling other sub-modules, by using standard
induction argument we know that all the tasks can be trained
within ℓMτ = ℓMN ln(1/δ) steps. (If M is larger than
log(N), then we only need O(MN)) Because each bucket
will maintain at most O(Nd) models at a given time and
will run one pass of SGD of each of them upon receiving a
sample, we will call SGD for at most O(ℓMN (+d) ln(1/δ))
times.

Remark D.2. Note that we don’t need to pass each data to
all the O(Nd) buckets at the same time. We can randomly
choose buckets. For example, if d = 10 but the compound
module only calls 2 submodules, then with high probability,
we only need to run O(N2) steps. Further in practice the
exploring among all N tasks may not be needed as there
may be some smaller candidate subset of only related tasks
that need to be considered,

In the proof of Lemma D.1 we implicitly assumed that
all the different combinations of child tasks are tried in a
single bucket for the parent task indexed by h(st). However,
in fact, there is limited space per bucket and the different
combinations are actually tried in different contexts and
hash buckets. The following claims provide details about
exactly which buckets are used in the training of a new task
t.

Claim D.3. Assuming child tasks are learned, the parent
task will be learned in some bucket of the table (not necessar-
ily the bucket corresponding to its original task-description
context) in a further O(nM/p) steps, where p ∈ (0, 1) is
the probability of the routing module choosing the correct
subset of children for the task.

Proof. Suppose C is the task id context for a task whose
child tasks have all been learned. By our assumptions on
task context similarity, the buckets corresponding to the
child tasks will be among those that the routing module finds
when it looks for trained buckets near to C. Therefore when
the routing module runs the k nearest buckets, combines
their results, and chooses some subset of the components to
keep as the context of the resulting sketch, it keeps exactly
the right components in order to successfully learn the task
with some probability p.

The context C ′ of this new sketch references both the origi-
nal task context C and the combination of previous modules
that contributed to it, so there is a separate hash bucket
for each possible combination that the model tries, which
prevents catastrophic forgetting while the routing module
searches for the best combination. After processing at most
λ+ nM/p examples (where λ represents how many exam-
ples were processed before the prerequisite modules had
matured) the function in bucket h(C ′) will have with high
probability learned to perform the parent task.

Claim D.4. Assuming the learning of a task has happened
as per Claim D.3, over time the execution pathway for a
node gets programmed into the original bucket h(st) for
that task.

This follows from the knowledge graph principle, i.e. that
outgoing edges point to commonly co-occurring sketches.
Intuitively, it corresponds to how a human learns to perform
a frequently-performed task so well over time that they don’t
have to think about the individual steps, it just happens
“automatically”.

Proof. Let C be the context for a task, and suppose that
the model has learned to perform this task by calling some
other modules with contexts C1, ..., Cr and then acting on
the compound output of these in bucket h(C ′).
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Every time h(C ′) performs successfully on an example
(e.g. low loss, high reward, etc; however “success” is mea-
sured in the model implementation), a copy of the sketch is
recorded as a high reward co-occurring example for all of
the modules in the execution pathway. Many such examples
will be “averaged” together over time, smoothing away the
details of individual examples and highlighting the parts
that remain constant, in particular the execution pathway
C → {C1, ..., Cr} → C ′ – note that from the compound
sketch of a large number of sketches the average value can
be recovered (see Claim 5 in (Ghazi et al., 2019)). This may
be one co-occurring example among many for the interme-
diate modules C1, ..., Cr, but it will dominate the outgoing
edges of the knowledge graph at the original bucket h(C)
and thus become the program for h(C).

E. Architecture v2
Now in v2, unlike in v1, the precise task identifiers are not
given explicitly in the input. consider for example a dog
whose current task is to “Listen to masters command and
follow that” – in this case the precise task will depend on
what the masters command is; if it is “fetch ball” then there
is a specific module to do that; there may be several atomic
modules possibly one per command that may be needed to
to this entire task.

For example the entire architecture can be thought of as one
giant compound module defined by some “boot” module
(think of this as the initial module where all input sketches
are sent); this boot module iteratively calls the routing mod-
ule and modules in the hash buckets where derived sketches
get routed – note that iterative calls can also be implemented
as a tail recursion where the first iteration recursively hands
off the processing for the remaining iterations.

An implicit precise task is a logically coherent subset of
training examples from the external world, but the precise
task description may not be explicit in the input, but may
be identified after routing the input through a sub-dag of
modules. Each task maps to a unique context which is
determined by applying the f function on the sketch at
some level.

Our learning algorithm uses a combination of deep learned
individual modules and probabilistic algorithm to connect
up these modules.

Here are the exact formulations of the task sets for the dog
command execution and the multi digit number recognition
examples.

Task set example 1:

• task1: input: {[TASK,“identify command”],
[VIDEO,⟨video⟩]} output: [OUTPUT, ⟨command-
word-from-audio-in-video⟩]

• task2: input: {[TASK,“identify command point to
relevant object”, [VIDEO,⟨video ⟩]} output: [OUT-
PUT, ⟨position of object of interest in video based on
command⟩]

Internal implicit modules: command task i: input: [“execute
given command”, i, ⟨video⟩] output: [⟨position of object of
interest in video based on command i⟩]

Note here that even though we have some vague task-
descriptions, the actual task-id is obtained by running task1.
To solve task2 the architecture needs to first have a trained
module for task1, figure out that task2 depends on task1, and
further that its output is meant to be the true context/task-id
for executing task2.

Note about distribution shift: Note that the module 1 here
may be trained on some words. Once trained on a few
words, it be automatically become usable for new words
even though there is a distribution shift.

Task set example 2: 5 digit recognition: input 5 digit
image, output the value; builds upon two modules: an im-
age segmentor that produces 5 smaller images, a 1 digit
recognizer that takes a smaller image and outputs one digit.

• task1: input: {[TASK,“1-digit-recognizer”],
[IMAGE,⟨image-of-1-digit ⟩]} output:
[OUTPUT,⟨number-0-to-9⟩]

• task2: input: {[TASK,“5-digit-recognizer”],
[IMAGE,⟨image-of-5-digit ⟩]} output:
[OUTPUT,⟨number⟩]

• task3: input: {[TASK,“5-digit-image-segmentation”],
[IMAGE,⟨image-of-5-digit ⟩]} output: [OUTPUT,list
of five [IMAGE,1-digit ⟨image ⟩]]

E.1. Sketch data structure

A sketch is a compact representation of a possibly
exponentially-wide (d×N ) matrix in which only a small
number k of the columns are nonzero, that supports efficient
computation of inner products, and for which encoding
and decoding are performed by linear transformations. For
concreteness, we note that sketches may be computed by
random projections to Rd′

for d′ ≥ kd logN ; the Johnson-
Lindenstrauss Lemma then guarantees that inner-products
are preserved.

For our purposes, we suppose there exist modules
M1, . . . ,MN that pre-processed the data and produced vec-
tors x1, . . . , xN ∈ Rd as output, where only k of the mod-
ules produce (nonzero) outputs. We view the sparse col-
lection of module outputs as a small set of key-value pairs
of the form {[Mi1 , xi1],. . . ,[Mik , xik ]}. We can apply a
randomized linear transformation to encode this as a dense
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vector S, and can also retrieve the set of key-value pairs
by using another linear transformation (Ghazi et al., 2019).
Therefore, although sketches have a dense (vector) repre-
sentation, they can also be interpreted as kind of structured
representation with multiple fields.

All these fields together, or equivalently the dense sketch
vector representation of the input, can be seen as containing
a latent task description along with irrelevant information.
The standard, task-ID approach, could be captured by assum-
ing that one component of the sketch contains the task ID.
More naturally, we could obtain a coarse-grained version of
the sketch by projecting down to fields that are considered
“high level” or invariant, discarding fields with high variance.
However, task identification might be more complex than a
simple projection, which leads us to the following.

E.2. Latent circuit

We wish to consider tasks that may be solved by a wide vari-
ety of combinations of previously learned functions, includ-
ing in particular compositions of these functions. Moreover,
in place of explicit task IDs, we wish to learn mappings
that select modules to execute on a (processed) input, thus
implicitly identifying a task to be performed with the input.
We suppose that for each task there is a latent circuit con-
sisting of learned submodules that further specify the task
description by applying nonlinear mappings to the dense
sketch vector. We will refer to the final sketch vector as a
context, which accurately identifies the task. Formally:
Definition E.1 (Tasks). Let U be a space of all (potentially
recursive) sketches that include the input and output of all
modules. Each task ti is a mapping : U → U . The input
distribution of ti, Di, is supported on U .

U can be polymorphic, that is, it can contain multiple differ-
ent data types, arranged in a tuple of key-value pairs.
Definition E.2 (Latent dependency DAG). The latent de-
pendency DAG is a DAG with nodes corresponding to tasks
t1, .., tN and edges indicating dependencies. Each task at
an internal node depends on at most d other tasks. (d may
not be known to the learner, but it is a small quantity.)
Definition E.3 (Latent circuit). Given a dependency DAG,
for each task ti there is a latent circuit with nodes corre-
sponding to the tasks t′i that it depends on. In this circuit
for ti, there are potentially multiple sinks (nodes with no
outgoing edges). The output of these sinks will be the inputs
to some atomic module, which gives the output of ti.

Note that there may be multiple atomic internal modules for
each ti and the circuit routes each example to one of these
modules. Thus, part of the “vague” task ti is to infer a more
precise task that is solved by a module.
Definition E.4 (Hidden task description / Context). Given
the circuit of each ti, there is a fixed (unknown) subset of the

outputs of the circuit that give a context value that uniquely
identifies ti. There exists a bound gi on the number of
context values for ti. There is one atomic module for each
context. We let G be an integer such that

∑
i gi ≤ G.

For the sake of keeping the analysis of correctness simple,
we make the following assumption:
Assumption E.5 (No distribution shift). For a latent depen-
dency DAG and circuit for task ti, suppose tj is one of the
nodes in the circuit of task ti, and let x ∼ Di be the input to
ti. For each xj computed as an input to tj when the circuit
is evaluated on x, we assume xj belongs to Dj .

The intuition behind this assumption is that if modules are
invoked on very different inputs from training, they might
not compute the desired output for subsequent use. This
assumption may be relaxed somewhat, to an assumption
that the distributions are “close” in some sense, but we do
not attempt this here. Indeed, large distribution shifts pose a
real barrier to all statistical methods in machine learning.

E.3. Locality Sensitive Hashing

We will use hashing to allocate tasks into buckets according
to their specific context vector values. These buckets will
store the trained modules that solve the respective tasks. So
that examples of the same task generally get mapped to the
same bucket(s), we use Locality Sensitive Hashing (LSH).

Indeed, we expect that two similar context vectors corre-
spond to examples of the same task. For example an audio
command might be given in different accents or might be
heard in the presence of background noise. LSH is a variant
of hashing that tends to hash similar objects to the same
buckets. Fix 0 < r1 < r2, where r1 is the threshold for
nearby points, and r2 is the threshold for far-away points,
i.e. for two vectors x, y ∈ Rd, we say x and y are nearby
if ∥x − y∥2 ≤ r1 and they are far-away if ∥x − y∥2 ≥ r2.
A LSH function h maps x, y to one of m hash buckets re-
spectively. Pr(h(x) = h(y) : ∥x − y∥2 ≤ r1) is a high
probability and Pr(h(x) = h(y) : ∥x−y∥2 ≥ r2) is a small
probability. One example LSH function uses random hyper-
planes (?) to map a vector into a hash bucket, although other
types of hashing such could be used as well – for example
min-hash (?) could be used on a set or a tuple object to map
that object to a discrete hash bucket. The sketch-to-sketch
similarity property combined with a similarity-preserving
hash function ensures that similar sketches go to the same
hash bucket (Appendix A); thus the hash table can be viewed
as a content addressed memory of the list of tasks.

Only frequently occurring buckets will be trained. If there
are m hash buckets in the LSH table we will only track
contexts that appear at least with frequency O(1/m), while
others get “timed out” and eventually forgotten if they do
not appear with sufficient frequency – m is at least the
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number of distinct contexts G2O(d2+d log(N/d)) that need
to be trained to correctly learn all the tasks. Note that this
tracking of frequency of persistent and ephemeral contexts
to ensure we catch anything with frequency at least O(1/m)
can be done in a total of Õ(m) buckets – one way to achieve
this is to simply drop (time-out) from the system any context
that does not appear within a time interval of Õ(m); clearly,
this way only Õ(m) contexts are ever in the system at any
one time. Thus, even if the dense sketch vectors can produce
an intractably large number of possible task descriptions,
by the pigeonhole principle we can bound the number of
contexts within a feasible range. We will see in the next
subsection how this can be used to eliminate fine fields of
high variance in the input sketch since each field itself can
be sketch as well.

The system works in a continuous loop where sketches are
coming in from the environment and also from previous it-
erations. The architecture and the main structure of the loop
appears in Fig. 3, where we denote the operation of hashing
to a specific bucket as routing module (OS). Pseudocode
is given in Alg. 1, where we refer to the mapping from the
input sketch vector to context sketch vector as the “context
function” f , and denote the LSH function by h.

E.4. Context function f as a decision tree

Both the latent circuit and projection can be learned in a
similar way, as a decision tree. For simplicity, let’s consider
how a projection f can be implemented and learned as a
decision tree. We are given an input sketch S, which is in
turn equivalent to a set of fields [S1, .., Sk] where each field
may itself be viewed as a sketch. We assume the sketches
are ordered by importance (e.g., based on frequency: if there
are m hash buckets we will only track contexts that appear
at least O(1/m) fraction of the time, while others get “timed
out“ – we assume m ≥ G2O(d2+d log(N/d))). We apply f
recursively and then over f(S1), .., f(Sk), from left to right,
in a decision tree where each branch either keeps or drops
each item and stops or continues based on what obtains
the highest rewards, tracked at each node (subtree) of the
tree. We learn the probabilities for all the branching choices
over time. Here the reward is defined in the following way.
Each branching path will lead to a specific context which
points to a bucket, so in parallel, the algorithm will allocate
each sample in all these buckets accordingly and train a
model in each bucket using the samples in it. Depending
on whether the trained model has passed the error threshold
ϵL as in Sec. 2 at the end of the branch, it will receive a
reward and propagate it back. Thus the context function
can be implemented as a recursive call to a decision tree
f([S1, .., Sk]) = DecisionTree([f(S1),..,f(Sk)]) (see Alg. 5)—
each node of the decision tree will be implemented in a
separate module (hash bucket).

The branch statement is branching to one of the three
buckets: h([TREE-WALK, l.append(Ci)]), h([TREE-
WALK, l])], or h([TREE-WALK, l.append(END-WALK-
SYMBOL)]) based on the rewards; each bucket continues
the decision tree walk with the rest of the entries in the list
of contexts. Note that during training the branch will be
a probabilistic softmax rather than a deterministic argmax,
with a temperature parameter T that controls the exploration
of the branches and decreases eventually to near 0; thus the
probability of each branch is proportional to e−Rbranch/T ,
where Rbranch is the reward of the branch. Initially all re-
wards are 0 and so all branching probabilities are all equal
to 1/3 (we could also consider other priors). Over time as
the temperature is lowered, the probability concentrates on
the bucket with maximum reward.

Claim E.6. If p is the initial probability of taking the opti-
mal reward path to the leaf in the DecisionTree algorithm
above, there is a schedule for the temperature in Algorithm 5,
so that in O(1/p log 1/δ) tree walk steps the modules at the
nodes of the tree will converge so that the decision tree
achieves optimal rewards with high probability 1− δ.

Proof. We will keep a very high initial temperature T (say
∞) for O((1/p) log(1/δ)) tree walk steps and then suddenly
freeze it to near zero (which converts the softmax to a max)
after these steps are finished. In these initial steps with high
probability 1− δ the optimal path to the leaf will have been
visited at least 1/δ times. Since each node is tracking the
optimal rewards in its subtree, the recorded best path from
root will have tracked at least this optimal reward.

The following corollary follows from Claim E.6 except
that at the leaf nodes instead of directly getting the reward
we have an atomic module being trained at each leaf and
the rewards propagate up the tree as the atomic module
converges to the right function to receive external rewards
for correct predictions. Since M examples are needed to
train each atomic module at the leaf, the number of steps
get multiplied by factor M .

Corollary E.7. In any task if the probability of picking the
right sequence of decisions for perform the task is p and
it takes M examples to train the task, then the task can be
learned in O(M/p) steps assuming all previous task it is
dependent on are already trained. Any future calls to the
decision tree will now use this recorded best path.

Remark E.8. Note that different subtrees in the decision
tree for the function f may be trained over time for different
tasks. The vague task descriptor st is just one of the fields in
the sketch (initial one). For a given task we are only focused
on training a specific subtree; however, the entire decision
tree for the entire function f is constantly evolving as more
and more tasks get trained.
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phenomena sketch context bucket new phenomena

Routing-Module (OS) 
LSH Table 
(modules)

Environment
Input

Environment
Output

Buckets contain programs,
pointers to frequently 
co-occurring sketches, 
expected rewards, etc.

Figure 3: The Routing-module (OS) routes sketches to the programs in the LSH table, which in turn produces sketches
that are fed back to the OS in addition to sketches of inputs from the environment. The OS, while shown here as a distinct
module, could itself be a module (program) in the LSH hash table.

The following is the main inductive Lemma to prove Theo-
rem E.10

Lemma E.9 (Inductive lemma). In any new task t with task
descriptor st that build upon previously existing tasks that
have already been learned to perform well. By induction
the probability of picking the right sequence of decisions for
perform the new task is p = 1/2O(d2+d log(N/d)) (including
which identifying which previous possibly implicit tasks it
depends on and wiring them correctly with the right con-
texts) and it takes M examples to train the task, then the
task can be learned in O(M2O(d2+d log(N/d))) examples for
each of the gi atomic modules assuming we have already
learned to perform all previous task it is dependent on.

Proof. The learning algorithm follows the framework of
Alg.1. The circuit routing is also done by Alg. 5: we feed
all the O(

(
N
d

)
3(

d
2)) candidate edges of the circuit to Alg. 5,

which finds the correct subset. The inductive guarantee that
lower-level tasks are well-trained comes from the bottom-
up online algorithm of v1. Modules are marked as mature
based on performance, and new modules are only built on
top of mature previous nodes. The probability of picking
the right sequence of decisions for perform the new task
is p = 1/2O(d2+d log(N/d)) (including which identifying
which previous possibly implicit tasks it depends on and
wiring them correctly with the right contexts) and it takes
M examples to train the task, then the task can be learned
in O(M2O(d2+d log(N/d))) steps per atomic module.

Theorem E.10 follows by applying the previous lemma in-
ductively. We assume for simplicity that all example are
uniformly distributed across the total of G atomic modules.
So only 1/G fraction of examples will be destined for a
given atomic module giving a factor G multiplier; the addi-
tional ℓ multiplier comes from the ℓ levels of hierarchy the
dependency DAG.

Our main result for this section is the following:

Theorem E.10 (Learning DAG using v2). Given a latent
dependency DAG of tasks over N nodes and height ℓ, and a
circuit per internal node in the DAG, there exists an archi-
tecture v2 that learns all these tasks (up to error rate ϵL as
defined in Sec.2) within O(ℓGM2O(d2+d log(N/d))) steps.

Proof. We previously saw how the context function can be
implemented as a probabilistic decision tree. Other func-
tions of the routing module that involve making subset-
choosing decisions, (for example, such as Lines 13 & 21
in Alg. 1, selecting a subset of d pre-existing modules as
children of a new task in v1) can be done using a separate
decision tree (e.g. Alg. 2) where one needs to select a subset
of at most d. This is similar to the operation of the context
function: we just need to input all matured modules of the
previous layer to Alg. 2, which finds the ≤ d child mod-
ules. In architecture v2 any subset-choosing decision in our
architecture can be done by using Alg. 2.

The latent circuit routing is also done by Alg. 5: we feed
all the O(

(
N
d

)
3(

d
2)) candidate edges of the circuit to Alg. 5,

which finds the correct subset. The inductive guarantee that
lower-level tasks are well-trained comes from the bottom-
up online algorithm of v1. Modules are marked as mature
based on performance, and new modules are only built on
top of mature previous nodes. The probability of picking
the right sequence of decisions for perform the new task
is p = 1/2O(d2+d log(N/d)) (including identifying which
previous, possibly implicit tasks it depends on and wiring
them correctly with the right contexts) and it takes M ex-
amples to train the task, then the task can be learned in
O(M2O(d2+d log(N/d))) steps per atomic module

We now formally state that the two task examples can be
learned.

Corollary E.11. Task set example 1 and Task set example
2 can be learned by our architecture if training data for
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different tasks are input in random order. This follows from
previous lemmas. Given training examples for different
tasks in random order, including for this combined task our
architecture automatically learns to use the output of one of
the tasks as a context and builds a downstream module for
each context value.

Proof. Although this follows from Theorem E.10, for illus-
tration we show the proof specifically for these examples
to show the exact sequence of events of how this is ac-
complished. We will argue for example 1 and the second
example is similar: note that there are two external task
descriptions. So the routing module will send these exam-
ples to two hash buckets based on the external task IDs.
So two modules atomic modules will get trained for each
of these tasks at two different buckets. However, only the
first task will get trained successfully to a good accuracy (if
the second task also gets trained successfully then we are
done). Now for the second task there is an option to build
a compound module which will call the first task. Now the
routing module will use the decision tree to explore differ-
ent ways of building a compound module for the second
task. The right combination involves the following: decide
that task2 is not atomic, run task1 on the input, take the
output of task1 and only make that as a context, go to hash
bucket based on this context and train an atomic module
there. Note that since only these three specific decisions
lead to success, the initial probability of picking this path
is c3 for some constant c. Thus after a constant number of
possible path ways with separate atomic modules will need
to be trained in parallel before we find a successful pathway.
So O(M/c3) additional training steps should suffice to train
task2 after task1 is complete. Once the right sequence of
calls has been established, this could be programmed as a
compound module in the bucket for task2.

Remark E.12. In these examples we simply extract the
external task ID which is the first field of the input and use
that as the context for the next iteration. However in general
this may be a very complicated process. This extraction of
the task ID (even what we call as the external task id here)
may itself be an evolving compound module consisting of
a combination of different atomic modules and evolving f
function decision trees branches over time.

F. Using the Knowledge graph
In the following we will assume that there is social network
of constant degree and we see images of pairs of people
chosen at random from this network.

Knowledge graph Task example 0:

• Task1: [“remember sketch”, [IMAGE,⟨image of pair
person1 and person2 ⟩]

“remember event” task is an unsupervised task only
meant to record the sketch once the count of its context
has exceeded a certain threshold and is not meant to
predict any kind of output. We will assume there is
a person recognition module that takes the image as
input and outputs a compound sketch of two person
sketches for the persons in the image (later we will
see how the routing module can automatically learn to
route the input to such a module without assuming it).

The following Theorem is a consequence of the ”Knowl-
edge graph” principle that is implemented in line 27 in
Algorithm3.

Claim F.1. Suppose we have a module that has learned to
identify faces from images and return the identity of those
people. Given input data of images of pairs of people, where
the pairs are chosen from a uniform distribution given by
edges of a graph, the knowledge graph created by our archi-
tecture contains a subgraph homeomorphic to this original
graph.

Proof. Given an input sketch [IMAGE, ⟨bit-map ⟩], by
Claim C.1 it gets routed to a person-recognition module.
That returns a compound sketch of the set of all people
in the image, so it will return the set { ⟨person-1-sketch ⟩,
⟨person-2-sketch ⟩}. This compound sketch will go to a new
bucket, which will get pointers to the original ⟨person-1-
sketch ⟩and ⟨person-2-sketch ⟩buckets due to co-occurrence.
See Architecture Principle (4) in section B. If we take the
subgraph of the knowledge graph consisting of all pairs of
person sketches and pointers to individual person sketches,
this will be homeomorphic to the original graph.

Knowledge graph Task set example 1:

• Task1: [“remember sketch”, [⟨person1 ⟩, ⟨ person2 ⟩]]
“remember event” task is an unsupervised task only
meant to record the sketch once the count of its context
has exceeded a certain threshold and is not meant to
predict any kind of output.

We assume that the sketch of a person is stable or
resistant across different instances of a person sketch.

• task2: [“Find common friends”, [⟨ person1 ⟩, ⟨ person2
⟩]], Output: [⟨list of common friends ⟩]

Knowledge graph Task set example 2:

• Task1: [“remember sketch”, [IMAGE,⟨image of pair
person1 and person2 ⟩]

• Task2: [“remember sketch”, { [IMAGE,⟨image of per-
son ⟩], [NAME, ⟨name of person] }
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• Task3: [“Extract list of persons (as features) from im-
age”, [IMAGE, ⟨image containing multiple people ⟩],
Output: [⟨list of person features from image ⟩]
We assume task 3 can be solved in a way where it
extracts stable person-features from images that result
in same “fingerprint” for the same person possibly
appearing across images.

• Task4: [“Find common friend names”, [[NAME,
⟨name of person1 ⟩, [NAME, ⟨name of person2 ⟩]],
Output: [⟨list names of common friends ⟩]

To demonstrate that knowledge graph is a useful extension,
we first note that, example 1 cannot be learned with simple
modules without knowledge graph.

Claim F.2. Without using knowledge graph memory, train-
ing a neural network submodule for task2 in Example 2
can only achive accuracy at most O(

√
n/N), where n is

the total number of bits used to storee all the weight of the
neural network and N is the number of people in the data.

Proof. This follows from a similar argument based on mu-
tual information as in (Wang et al., 2021). W.L.O.G. we can
assume that the number of common friends is 1 for the sake
of the lower bound proof.

Claim F.3. All tasks in Example 1 can be solved jointly
from training data in polynomial time. This can be solved
using the knowledge graph edges.

Proof. Task1 does not involve any prediction. For the sec-
ond task the architecture will first try to train an atomic mod-
ule but will fail. overtime because of task1, a knowledge
graph of friend connections will you get created between the
sketches ⟨person1 ⟩, ⟨person2 ⟩ and the compound sketch
[⟨ person1 ⟩, ⟨ person2 ⟩] (based on architecture principle
4, line 7 in the pseudo code). After this in the first itera-
tion of the architecture the knowledge graph edges would
be an extracted (line 15 in the pseudo code) for the input
sketches ⟨ person1 ⟩, ⟨ person2 ⟩. these edges will point
to the list of all friends for ⟨person1 ⟩ and ⟨person2 ⟩ re-
spectively. In the second iteration of the architecture with
some probability it will make the set of these two list as
a compound sketch for the next round and [“find common
friends”, ⟨extract first part-edges ⟩, ⟨extract second part-
edges ⟩, ⟨take-combination ⟩] as the new context, and we’ll
start training an atomic module at this round. Since finding
the intersection of two lists is a simple task this training will
succeed to make the correct prediction. Overtime this path-
way (routing module decision tree choices) of extracting
neighbors of ⟨person1 ⟩ and ⟨person2 ⟩, making a set out
of the two lists, and giving it to that new atomic model will
get strengthened, and eventually hard-coded in the original
bucket for the “Find common friends” task.

Note: We remember sketches that occur more than a certain
fraction of time. If there are m buckets we track events that
occur more than 1/m fraction of the time – this ensures that
there is space for all frequently occurring contexts.

Claim F.4. All tasks Example 2 can be solved jointly from
training data, given inputs from Example 2, we can learn
all tasks in polynomial time (this can be solved using the
knowledge graph edges).

Proof. This is merely a generalization of the earlier proofs
but goes through higher number of iterations of algorithm 1
along the lines of the proof of Theorem E.11. Task 3 is a leaf
level task that is used by Tasks 1 and 2. Task 2 needs to route
the image part of the input sketch to Task 3 getting ⟨person-
features⟩for the person in the image; then f function needs
to create the compound sketch [⟨person-features ⟩, ⟨name of
person ⟩] as the context. Then this context is remembered in
the hash buckets including its component sketches that point
to the compound sketch and vice versa. Since this involves
making a constant number of correct routing decisions, this
will happen with constant probability. Also, Task 1 needs
to route the image in its sketch to Task 3 to get the person-
features for the two people in the image and then the pair of
person features needs to be remembered in their bucket with
appropriate bi-directional pointers to the individual person-
features. We now have all the edges between pairs of friends
and between a person and their name. with these established,
Task 4 needs to use the names of the two people to lookup
the edges to find their person-features and then just like
in example 1, use friend edges to find two lists of friends
for each of the persons, and then convert these two lists
to two lists of names and then train a final atomic module
to find the intersection of these lists of names. Assuming
a constant degree friendship graph, all these choices will
line up with at least constant probability. To see why all
this is a constant number of probabilistic choices, think of
the recursive view of Algorithm 3 mentioned in the end of
section B.2. All that is needed is that in a certain context
(that depends on the content of the recursive call stack) the
routing module when given a person-sketch as input can
be probabilistically trained to return a name for that person
sketch, and then in some other context also return a list of
names for a list of person-sketches, and then again in some
context to convert two lists of person sketches to two lists of
name sketches; these are all a sequence of decision choices
in a combined view of a decision tree for the routing module;
over time the correct probabilistic choices get strengthened
based on external rewards to arrive at the right decision tree
and atomic module for Task 4.
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G. Architecture v3: Q-learning and other
Reinforcement Learning tasks

In this section we will show how Reinforcement Learning
(RL) tasks may be solved by our architecture by executing
algorithms such as Q-learning. The main results of this
section are that an extension of our architecture, Architec-
ture v3, can perform tabular Q-learning so that it can learn
to solve multiple RL problems at once without confusion
(Claim G.3), and that it can work out how to use other
modules (e.g. image classification) to improve its policy-
learning, thus producing a form of “modular RL” (Theo-
rem G.9).

G.1. Lifelong reinforcement learning

Several different formal RL tasks are studied in the literature.
Here, we focus on episodic RL problems:
Definition G.1. Episodic RL problems are defined as fol-
lows: We fix a set of states S and actions A. An environment
is given by a Markov Decision Process P , that for a given
pair (s, a) ∈ S ×A, specifies a distribution over new states
s′ ∈ S; there is also a distribution ρ over starting states, and
a reward distribution R that for each pair (s, a) ∈ S × A
gives a distribution over real-valued rewards. There are T
episodes of length H each. In an episode, a starting state
is drawn from ρ and revealed to the agent. Then, for H
steps, the agent is allowed to choose an action a ∈ A, the
environment transitions to a new state according to P and
gives the agent a reward according to R.

For simplicity, we will first consider a lifelong learning
setting in which the episodes for different, independent
environments are interleaved, similarly to the setting of
Section ??.
Definition G.2. We define the lifelong RL problem with
independent environments as follows: suppose we have N
environments with their own corresponding MDPs and re-
wards. The interaction still consists of episodes of length H .
At the beginning of an episode, one of the N environments
Ei is chosen by i ∈ Uniform([N ]), and a starting state
is generated s ∼ ρi. i and s are revealed to us, and we
interact with Ei for H steps. In the next episode, a new
environment is again chosen by independently sampling
i ∈ Uniform([N ]) and a starting state is independently
sampled s ∼ ρi, and we interact with the new environment
for H steps. We keep doing this for T episodes.

We will assume, moreover, that the interaction with the
environments during an episode of the lifelong RL problem
has a specific form, as follows. We introduce new, specific
types of input and output sketches: one to input a state
from the environment, another to output an action, and a
third to possibly receive a reward for that action. The input
data for RL problems arrives as sketches of state input from

the environment and a possible set of actions in the form
Sin = [RL-CONTEXT,[⟨rl-state⟩, ⟨possible-actions⟩]]. An
action is taken by outputting an [ACTION, ⟨action-choice⟩,
⟨rl-state⟩] sketch for choosing a specific action in the state rl-
state. Rewards for an action are provided as the compound
tuple sketch [[REWARD, ⟨r⟩], [ACTION, ⟨taken-action⟩,
⟨rl-state⟩]]. (Note that our convention is that the all-caps
fields here represent some constant label/enum type and
lower case fields may be variable “arguments”). [[Nte that
multiple RL problem instances can be fed into our system
as the state could correspond to the state from any of the
problems. Later in subsection .. we will see how the state
may not be given explicitly but may need to be inferred
using other modules just as task and context is inferred in
v2]]

Architecture v3 details: To handle such RL specific sketch
inputs and outputs, architecture v3 extends Architecture v2
by introducing PROGRAM-type sketches and EXECUTE-
type sketches, allowing it to pass programs to other buck-
ets and execute these programs in the new buckets. The
former has the format [PROGRAM, ⟨program-sketch⟩],
where ⟨program-sketch⟩can be interpreted as a program
that can be executed on some input. When the routing mod-
ule comes across a sketch s = [[EXECUTE, [PROGRAM,
⟨program-sketch⟩]], ⟨input-sketch⟩], it executes the program
⟨program-sketch⟩on input ⟨input-sketch⟩after going bucket
corresponding to f(s) – no separate program needs to be
created at h(f(s)).

G.2. Tabular Q-learning

In this section we show that our architecture can be used
to perform Q-learning. Specifically, we will consider Q-
learning with a tabular episodic Markov Decision Process
(MDP). In this environment, there is a set of states S with
|S| = S, and a set of actionsA with |A| = A. Each episode
has a finite number of steps H . At the beginning of each
episode the initial state x1 ∈ S is arbitrarily chosen. At each
step h, the agent observes a state xh ∈ S, picks an action
ah ∈ A, receives an reward and transitions to the next state
xh+1 drawn from some distribution Ph depending on the
current state and action. In this MDP, we use Ph to denote
the transition probabilities at step h ∈ [H]: Ph(·|x, a) is the
distribution over next state that the agent got transitioned
into if at step h it takes action a ∈ A at state x ∈ S. Let
rh(x, a) ∈ [0, 1] denote the deterministic reward it receives.
We use πh to denote the policy of actions at h. That is,
πh : S → A. The goal is to compute policies such that the
actions chosen by the policy at each step give accumulated
rewards at each episode is maximized.

First note that the decision tree learning algorithm in sec-
tion E.4 can be viewed as a special case where the state
action graph is a tree and all rewards are at the leaves. We
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extend that idea to Q-learning with general state graphs.
Now consider a general state-action graph, not just a deci-
sion tree. We give here a high-level overview of how an RL
algorithm can be implemented in Architecture v3, with a
view to showing that it can implement a tabular Q-learning
algorithm (Claim G.3)

We define a special module called the RL-module, that gets
executed on sketches with the context RL-CONTEXT. This
module outputs a sketch SRL=[PROGRAM, ⟨rl-state-sketch
⟩] – note that it doesn’t execute the RL algorithm but simply
outputs it as a program. We assume that this program sketch
is hard-coded into the architecture, since the goal here is
to show that our architecture can learn using a specified
RL algorithm, not that it is capable of developing its own
algorithm from scratch.

When Sin = [RL-CONTEXT,[⟨rl-state⟩, ⟨possible-
actions⟩]] is input, the RL-CONTEXT context is looked up
to get SRL, and then Sin and SRL are combined using atten-
tion to produce the compound state sketch S = [[EXECUTE,
SRL], Sin]. This then goes to the bucket h(f(S)) where ⟨rl-
state-sketch ⟩is executed on input [rl-state, possible-actions]
to output a specific taken-action sketch Saction. The Saction

is a recursive sketch [ACTION, ⟨taken-action⟩, ⟨rl-state⟩]
that leads to (or is followed by) the reward input sketch
Sreward = [[REWARD, ⟨r⟩], [ACTION, ⟨taken-action ⟩,
⟨rl-state ⟩]] for that taken-action edge and a next S′

in sketch
that inputs the next state from the environment. Since this
will get propagated back along the knowledge graph, the re-
ward will get accounted at the bucket for [ACTION, ⟨taken-
action⟩, ⟨rl-state⟩] (or equivalently, the outgoing edge of
rl-state corresponding to taken-action). The rl-state-sketch
encodes the specific details of the RL algorithm, e.g. hy-
perparameters and exploration method, tracking rewards on
each action, tracking temperature, and converging on the
best action for a state.

Note also that the rl-state and action may be discrete
states/actions or sketches of more complex/continuous states
and action possibilities – in the latter case we are taking
advantage of the “discretizing” property of the h(f()) func-
tion that maps sketches to hash buckets-ids to simplify our
state/action space.

G.2.1. ONE LOOP OF THE Q-LEARNING ALGORITHM

1. Input arrives as a sketch Sin = [RL-CONTEXT,[⟨rl-
state⟩, ⟨possible-actions⟩]] containing the state S =
⟨rl-state⟩, a list of ⟨possible-actions⟩= [Ai], and the
hint RL-CONTEXT that this a Q-learning problem.

2. Because of the RL-CONTEXT context, this gets sent
to the Q-learning bucket.

3. The Q-learning bucket outputs (P, S), where P is a
program. get SRL, and then Sin and SRL are combined

using attention to produce the compound state sketch
S = [[EXECUTE, SRL], Sin].

4. In the bucket h(f(P, S)), we run P on S. P looks
at the list of actions / outgoing edges and samples an
action A.

5. The output of the bucket h(f(P, S)) is a command to
take action A in the environment. This generates a new
state S′ and reward R(S′, A, S). Sketch these into a
new sketch S′ and Q-learning hint.

6. As above, f sends S′ to the Q-learning bucket to pick
up the program P and outputs (P, S′).

7. In the bucket h(f(P, S′)), the program P looks at
the outgoing edges to get the Q-values Q(S′, A′) and
computes the new Q-value for (S,A).

8. Backprop: update the outgoing edges and Q-values.

Note: if the number of actions for each state becomes large,
then an alternative version where we visit the state-action
buckets may work better.

Claim G.3. Architecture v3 can do tabular Q-learning.
Its implementation is compatible with the UCB-Hoeffding
algorithm given in (?), ensuring it can learn an ϵ-optimal
policy in O(1/ϵ2) episodes. Further, Architecture v3 can
solve multiple RL problems at once, without conflict between
the different sets of Q-values and without needing to know in
advance how many separate problems there are or allocate
resources in advance.

Proof. We assume that the input data is formatted as de-
scribed above, and that the RL-module with hardcoded Q-
learning program-sketch is provided. The Q-learning algo-
rithm needs to do two things: at state s it needs to choose
an action a according to some exploration method (random,
greedy, ϵ-greedy, etc), and at the subsequent state s′ it needs
to identify the maximum Q-value for s′ and perform the
tabular Bellman update

Q(s, a)← (1−α)Q(s, a)+α
(
R(s′, a, s)+γmax

a′
Q(s′, a′)

)
for s; we can assume that hyperparameters such as the
learning rate α and the discount factor γ are both encoded
in the RL-module. We use the recursive nature of sketches
to combine these two steps: essentially we describe the
process at state s′ and note that the “update previous state”
step is empty if the rl-state sketch S′ does not point to a
previous state.

So let S′ be the current rl-state-sketch, which (if it oc-
curred as a result of taking some action a = ⟨previous-taken-
action ⟩at rl-state s) includes a recursive copy of the sketch
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[⟨previous-taken-action ⟩, S] and also the value of the re-
ward R(s′, a, s) obtained from this action.

At the bucket h(f(S′)) the Q-learning program-sketch
looks up the maximum Q-value of the available actions
at S′ (these may be stored e.g. as a table in the bucket
h(f(S′)) or as weights on the outgoing edges) and uses this
to both choose its next action and to compute the reward
R := R(s′, a, s)+γmaxa′ Q(s′, a′) to be accounted to the
previous state-action pair (if any). It returns this information
as the compound tuple sketch [[ACTION, ⟨taken-action ⟩],
[REWARD, R]]; recall that ⟨taken-action ⟩is a recursive
sketch that includes the previous state-action pair (if it ex-
ists). Now this action is executed in the environment (which
may provide another state S′′ for the next round), while
the knowledge-graph-updating process passes this sketch
back to the bucket h(f(S)) of the previous state-sketch. Its
similarity to the edge with matching ⟨previous-taken-action
⟩component ensures that the reward is accounted to the cor-
rect state-action pair, and since the sketch compounding
process essentially produces a weighted average of simi-
lar components (with weights that can be specified by the
user/RL-module), this completes the Bellman update.

To see that this is compatible with (?), observe that we need
only change details that are hardcoded in the RL-module: re-
place α with αt := (H+1)/(H+t) where H is the episode
horizon and t is the frequency count for this state-action
pair, and add a bias term bt := c

√
H3ι/t to the reward (c

and ι are constants given in (?)Theorem 1]jin2018q). Based
on online-to-batch conversions, the regret can be arbitrarily
small when the number of episodes is large enough; thus
we can achieve ϵ error rate if we have O(SA/ϵ2) episode
samples.

Claim G.4. The above implementation can be extended to
include deep Q-learning, where each state bucket learns
and stores a parametrized Q-function for that state.

Claim G.5. Architecture v3 can solve multiple independent
RL problems at once, without conflict between the different
sets of Q-values and without needing to know in advance
how many separate problems there are or allocate resources
in advance.

Proof. New hash buckets are created by the architecture
as new contexts (i.e. rl-states) arise, allowing it to expand
dynamically as needed. The Q-values for each state are
stored locally within the corresponding rl-state bucket.

Advantages of using Architecture v3 for Q-learning: Im-
plementing Q-learning in our architecture comes with sev-
eral key benefits, including:

• Graceful generalization to continuous state spaces:
since f drops the extraneous environmental details

from a sketch, the model automatically groups together
similar states.

• Learning an environment model: By passing sketches
of executed actions back along the knowledge graph,
the outgoing edges of the bucket corresponding to
a state s can store not only the Q-values of state-
action pairs (s, a) but also frequency counts of tuples
(s′, a, s): that is, we learn a model of the transition
function as a free side-effect.

Remark G.6. While we have focused on tabular Q-learning
here for simplicity, we note that many different RL al-
gorithms could be “dropped in” simply by changing the
program-sketch provided to the RL-module. We have also
restricted our attention here to what happens one step back
along the knowledge graph, but by backtracking the sketches
further it becomes possible for earlier states to use this data
in future to “look ahead” several steps. Finally, we note that
this modular architecture should also lend itself well to deep
Q-learning approaches, where each state bucket learns and
stores a parametrized Q-function for that state; however, the
implementation of this is beyond the scope of this paper.

G.3. Modular Q-learning

In the problem of Sec. G.2, each state can be explicitly ob-
served. However, in reality, the recognition of the states
might need to be learned. The real power in our architecture
comes from its ability to seamlessly combine RL decision
making with other types of task, e.g. classification. As
a simple example, consider a situation where we need to
choose one of a limited number of actions in response to
an image of a person displaying one of several gestures. A
single large RL model probably could learn an effective
policy for this task, but since it can’t identify the indirect
association image→ gesture→ response to gesture it could
just have easily have learned to react to some spurious pat-
terns in the training dataset. Meanwhile, our architecture
would simultaneously try this approach (i.e. try to learn
a policy directly from the images) and also explore the
possibility of using related modules as part of its decision.
Assuming it had already developed a gesture-classification
module, pathways that make use of this module would be
consistently high reward and therefore preferred over the
direct approach. Indeed, as we show below, we need not
even assume the prior existence of the gesture-classification
module: our architecture can learn to solve both problems
simultaneously (assuming it is provided with training data
for both problems).

Definition G.7. We define the modular RL problems as
follows: suppose we have N environments with their own
corresponding MDPs and rewards, and N ′ classification
problems where one identifies the states of the RL. At each
time step, uniform randomly, we are either given a labeled
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sample of one of N ′ classification tasks, or put into one of
the N environment and interact with it for H steps as in
Definition G.2. We assume that the data distribution of state
identification task is P .

Definition G.8. A distribution P m-dominates distribution
Q if for all x in the sample space, we have Q(x) ≤ mP (x).

If the data distribution P of state identification during train-
ing m-dominates state classification distribution Qi con-
ditioned on state si ∀i = 1, . . . , S, then if classification
module can achieve error rate of ϵ/m on P , it can also
achieve error rate of ϵ on each Qi. Indeed, let E be the
event that we make an error in classification, then since
P (E) =

∑
x∈E P (x) we have that for all i:

Qi(E) =
∑
x∈E

Qi(x) ≤
∑
x∈E

mP (x) = mP (E) ≤ ϵ.

However, to guarantee P can m-dominate every Qi, then
we need m ≥ S. Indeed, consider that the supports of all
Qi are disjoint: Di ∪ Dj = ∅ ∀i ̸= j where Di = {x :
Qi(x) ̸= 0}. Then we have

m = m
∑
∀x

P (x) ≥ m

S∑
i=1

∑
x∈Di

P (x) ≥
S∑

i=1

∑
x∈Di

Qi(x) = S.

Intuitively, we are assuming that there is some data-
generating distribution P that can cover every x in the
support of each Qi with some properly lower bounded
probability mass. An example of such a P would be
the uniform mixture of Q1, . . . , QS . That is P (x) =

(1/S)
∑S

j=1 Qj(x) ∀x. In this case, it’s immediate that P

can S−dominates each Qi since SP (x) =
∑S

j=1 Qi(x) ≥
Qi(x) ∀i. From another perspective, if P allows us to
visit each state si at least µ fraction of the time, then P can
(1/µ)-dominate each Qi.

Theorem G.9. Given a modular RL problem, Architecture
v3 figures this connection out automatically and uses the
classification module as part of its RL solution.

Proof. This follows by combining modules along the same
lines as the proof of Theorem E.11

This demonstrates one of the key points of our architecture:
it is capable of handling multiple types of problem in a
uniform way, and hence is able to combine them and exploit
the relationships that arise organically in the knowledge
graph. Combined with the fact that it can expand and create
new modules as it discovers new concepts, the result is an
extremely flexible architecture capable of solving complex
multi-layered problems.

H. Case Study: Card Game
Consider a card game where one has to pick a card from the
cards in hand that has the same number as on the top card
on the deck on table, the desired module is to “identify card
from hand that has same number as that of top card” and
output sketch is “put that card on the table”. This module
gets executed when one hears “make your next move”.

The main sketches in consideration are [AUDIO, “make
your next move”], [CARD-ON-TABLE, ⟨top-card-sketch ⟩],
[CARDS-IN-HAND, ⟨card-in-hand-sketch ⟩], From the on-
going game there is also a sketch [CARD-GAME, [NAME,
“sequence”].

Let us assume that the system has already learned about
cards and there is a module to recognize the type of a
card that takes as input a card-image [CARD-IMAGE,
⟨image-sketch ⟩] and produces a sketch [CARD, ⟨card-
sketch ⟩] that contains the number and type of the card.
So ⟨card-sketch ⟩= [CARD-DESCRIPTION, {[CARD-
NUMBER, ⟨number-sketch ⟩], [CARD-COLOR, ⟨color-
sketch ⟩], [CARD-SYMBOL, ⟨card-symbol-sketch ⟩]}]

We will also assume based on knowledge of previous card
games that the sketches [CARD-ON-TABLE, ⟨top-card-
sketch ⟩], [CARDS-IN-HAND, ⟨card-in-hand-sketch ⟩] are
produced from the visual input [IMAGE, ⟨input-image-of-
scene] – based on the sketch [CARD-GAME, [NAME, “se-
quence”]] and the sketches that the visual analysis module
outputs attention is paid on sketches related to cards.

The compound sketch ([AUDIO, “make your next move”],
[CARD-ON-TABLE, ⟨top-card-sketch ⟩], [CARDS-IN-
HAND, ⟨card-in-hand-sketch ⟩], [CARD-GAME, [NAME,
“sequence”]]) hits a new hash bucket that needs to learn the
specific new module. Since this bucket is empty it may be
initialized from other buckets for similar buckets; if there
is a program for another similar card game it will have the
same structure but with a different card-game name. A new
program will get trained for this new game starting from that
program. That program will call one program to “identify
the best card in hand” and then another one to “put that card
on the table”. Only the former needs to be modified. The
version is simple and can be trained from a few examples:
from the card sketches on hand and the card sketch on top
of the table it needs to output the one in hand that matches
the number of the one on table.

I. Misc
I.1. Correspondence between programs, modules,

networks, embeddings

Each embedding in an embedding table in any deep network
can be viewed as a “module” that modifies the “program”
defined by the upper layers. Similarly each embedding in a
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Figure 4: Relevant sketches in a card game where one has to pick a card from the cards in hand that has the same number as
on the top card on the deck on table. The desired module is to “identify card from hand that has same number as that of
top card” and output sketch is “put that card on the table”. The main sketches in consideration are [CARD-ON-TABLE,
⟨top-card-sketch ⟩], [CARDS-IN-HAND, ⟨card-in-hand-sketch ⟩] that get triggered on the input [AUDIO, “make your next
move”]

hash table can be viewed as a “program” embedding. Pro-
gram embeddings can be interpreted more generally where
they go through some main/global network that generates
an encoding of another deep network.

We could also construct new programs by finding a cluster
of related programs and doing a low rank decomposition of
their vector representations. The low rank approximation
can be viewed as “subroutines” and the programs can be
viewed as combinations of these subroutines.

I.2. CNNs as simple recursive functions

A compound module can “call” other modules. With this
ability, there is a simple modular recursive view of a CNN
instead of the normal bottom up view where we start with
small patches and keep combining them to form bigger and
bigger patch representations as one goes up the network.

In the recursive view, the image goes to a module that han-
dles patches at the higher level that recursively calls the
module for the lower level patches. Given an input image
form a set of patches (of the largest size with the appropriate
stride); “call” the module for each of these patches to get a
sketch for each patch; combine all these sketches for these
patches to get a single sketch for the full image. (Note that
this is a top down view where the module for the patch of
the certain size recursively calls the module for the patches

of the next largest size.)

I.3. Task id’s may not be present

Although we have assumed even in v2 that there are some
external Task descriptions (that may not be entirely explicit),
in real life we do not get such a separate field but receive
only an endless sequence of sights and sounds. The external
task description may in fact also be “inferred” from the
video input – for example the task “PLAY CARD GAME”
may be inferred from the context around the current images
or from the the previously seen/heard inputs.

One limitation is that we haven’t gotten into how logic,
reasoning, and language could be handled uniformly. While
we believe there could be modules that evolve for these,
the conceptual details as to how they would work in this
architecture have not been investigated.

I.4. Experiment details

I.4.1. FIVE DIGIT RECOGNITION

For the modular approach, the sub-modules are as follows.

1. For the image segmentation task, the sub-module is a
convolutional neural network with the following lay-
ers: a convolutional layer with 32 output channels and
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3 × 3 kernel; a flatten layer; a fully-connected layer
with 128 output units; a fully-connected layer with 64
output units, and a fully-connected layer with 5 output
units (output layer, with output being the horizontal
segmentation coordinates).

2. For the single digit recongition task, the submodule is a
convolutional neural network with the following layers:
a convolutional layer with 32 output channels and 3×3
kernel; a flatten layer; a fully-connected layer with 128
output units; a fully-connected layer with 64 output
units, and a fully-connected layer with 10 output units
(output layer, with output being logits of the 10 output
classes).

For the end-to-end approach, the model is a convolutional
neural network with the following layers: a convolutional
layer with 32 output channels and 3 × 3 kernel; a flatten
layer; a fully-connected layer with 128 output units; a fully-
connected layer with 64 output units, a fully-connected
layer with 256 output units, and a fully-connected layer
with 10000 output units (output layer, with output being the
horizontal segmentation coordinates).

I.4.2. INTERSECTION OF HALSPACES

For the modular approaches, all the modules are 3-layer
fully-connected network. Number of hidden units for each
layer is 10, 50 and 2 (output layer). For the end-to-end
approach, the model is a 3-layer fully-connected network
with 100, 500 and 2 units.

For the K = 10 case, we noticed that the final solution
doesn’t require all the 10 sub-modules to be trained first.
We repeat the experiment for 30 times and for most times, it
trains 7 sub-modules and the final model uses the output of
these 7 modules and the raw input xi to successfully predict
the intersection of 10 halfspaces.

Algorithm 3 Informal presentation of the main execution
loop
Input: input sketch T (this sketch may contain a desired

output for training)
23 current-sketches ← {T} while
current-sketches is not empty:

24 current-programs ← ∅ foreach sketch S in
current-sketchesdo

25 extract context C = f(S)
26 update access-frequency-count of bucket h(C)
27 Store S as an outgoing edge of h(C), if there are

too many sketches store a compound sketch. Store
pointers to co-referencing/co-occurring sketches
buckets.

28 if bucket h(C) has a program P :
29 append (S, P ) to current-programs
30 else:
31 if bucket h(C) is frequently accessed:
32 initialize program at h(C) with program

from nearest non-empty context bucket and
mark it for training

33 fetch programs from nearby trained buckets
(with similar contexts), append those (S, Pi)
to current-programs

34 Routing module chooses some subset of
current-programs, runs each program
on its associated sketch, appends outputs to
current-sketches

35 Append sketches on outgoing edges of accessed buckets
to current-sketches

36 if any of the programs are marked for training:
37 routing module picks one or some of them and trains

them, and may choose to stop execution loop
38 if any of the sketches is of (a special) type OUTPUT or

ACTION sketch:
39 routing module picks one such, outputs that sketch

or performs that action, and may choose to stop
execution loop

40 if any of the sketches is of type REWARD sketch (say for
correct prediction or action):

41 routing module updates the reward for this bucket
and propagates those rewards to prior buckets

42 Routing module uses attention to combine elements
of current-sketches into at most k compound
sketches S1, . . . , Sk (may produce 0 sketches)

43 current-sketches← {S1, . . . , Sk}
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Algorithm 4 Informal presentation of the recursive view of
the main execution loop
Input: input sketch T (this sketch may contain a desired

output for training)
44 With some probability set leaf-level-recursion = TRUE
45 if leaf-level-recursion:
46 extract context C = f(T )
47 update access-frequency-count of bucket h(C)
48 if bucket h(C) has a program P :
49 if P is marked for training, train it
50 return P(S)
51 else:
52 if bucket h(C) is frequently accessed:
53 initialize program at h(C) with some random

program and mark it for training.
54 with some probability Fetch programs Pi (pos-

sibly by some similarity criterion) return list
of Pi(S)

55 else:
56 foreach component sketch Si in T do
57 T = list of Algorithm1(Si)
58 T = pick k combinations of sketches in T, and combine

them into compound sketches:
59 return Algorithm(T)
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Algorithm 5 Decision Tree
DecisionTree([C1, ..Ck]) = TreeWalk([], [C1, ..Ck])

TreeWalk(l, [Ci, .., Ck]) = branch-based-on-argmax (
reward(h([TREE-WALK, l.append(Ci)])]) :TreeWalk(l.append(Ci), [Ci+1, .., Ck]) /* keep Ci in l and proceed to next
field */
reward(h([TREE-WALK, l])]): TreeWalk( l, [Ci+1, .., Ck]) /* drop Ci and proceed to next field */
reward(h([TREE-WALK, l.append(END-WALK-SYMBOL)]) ) : TreeWalk(l, []) /* exit the walk and output l */

) /* l is the subset of fields from the sketch from the prefix processed so far, Ci, .., Ck is the remaining part of the sketch. l
is used as the context for this current decision tree node and [C1, .., Ck] is the input sketch. Each distinct value of l is a
separate decision tree node */
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