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Abstract

We propose a new neural network ensemble al-
gorithm based on Audibert’s empirical star algo-
rithm and snapshot technique. We provide op-
timal theoretical minimax bound on the excess
squared risk. Additionally, we empirically study
this algorithm on regression and classification
tasks and and show that it can be successfully
applied to budget construct ensemble.

1. Introduction
Deep learning has been successfully applied to many types
of problems and has reached the state-of-the-art perfor-
mance. In many complex problems, such as the Imagenet
competition (Deng et al., 2009), the best results are achieved
by ensembles of neural networks, that is, it is often useful
to combine the predictions of multiple neural networks to
create a new one. As shown in work (Kawaguchi, 2016),
the number of local minima grows exponentially with the
number of parameters. And since modern neural network
training methods are based on stochastic optimization, two
identical architectures optimized with different initializa-
tions will probably converge to different solutions. Such a
technique for obtaining neural networks with subsequent
construction of an ensemble by majority voting or averaging
is used, for example, in article (Caruana et al., 2004).

In addition to the fact that the class of deep neural networks
has a huge number of local minima, it is also non-convex.
It was shown in work (Lecué & Mendelson, 2009) that for
the procedure of minimizing the empirical risk in a non-
convex class of functions, the order of convergence is not
optimal. J.-Y. Audibert proposed the star procedure method,
which has optimal rate of convergence of excess squared
risk (Audibert, 2007). Motivated by this observation and the
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huge success of ensembles of neural networks, we propose
a modification of the star procedure that will combine the
advantages of both methods.

We also take into account that training even a single neural
network can be very expensive, and we propose an imple-
mentation of our algorithm that reuses the parameters of the
trained models. In addition to this, we take into account that
it is impossible to achieve a global minimum in the class of
neural networks, and we consider the situation of imprecise
minimization.

One can look at this procedure as a new way to train one
large neural network with a block architecture, as well as
a new way of aggregating models. In this work, we carry
out a theoretical analysis of the behavior of the proposed
algorithm for solving the regression problem with a class of
sparse neural networks, and also check the operation of the
algorithm in numerical experiments on classification and
regression problems.

The main results of our work can be formulated as follows:

1. A multidimensional modification of the star procedure
is proposed. We also offer budgetary implementation
of this procedure.

2. We give an upper bound on the generalization error
for the case of approximate empirical risk minimiz-
ers, which implies the optimality and stability against
minimization errors of our algorithm.

3. We illustrate the efficiency of our approach with nu-
merical experiments on real-world datasets.

2. Related work
2.1. Ensemble strategies

The main idea of the ensemble is to train several predictors
and build a good metamodel on them. There are many
techniques for its construction. We present some of them.
A more detailed review can be found in the work (Ganaie
et al., 2021).

Bagging The first of two stages is the generation of several
samples with the same distribution as the training one. The
next stage is training multiple models and aggregate their
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predictions. There are cases when the predictions of the
constructed models are transferred to another model as new
features (Kim et al., 2002). But still, most often, aggregation
is performed either by majority voting or by averaging.

Boosting Another approach to construct ensembles is
boosting. The idea is to build one strong model from several
weak models by stepwise additive modeling. It was first
applied to random trees to construct a so-called random
forest. But it has also been applied to deep learning models
as well. For example, in the task of recognizing facial
expressions (Liu et al., 2014), or to improve the predictions
of convolutional neural networks (Moghimi et al., 2016).

Snapshots The main problem in aggregation of deep learn-
ing models is the cost of training. Training even one modern
model requires a lot of resources, and the ensemble needs
a lot. A snapshot technique (Huang et al., 2017) and their
modification (Garipov et al., 2018) have been created to
combat this problem. In short, during the learning process,
the step length in the gradient descent is cyclically changed.
This allows a learner to get into various local minima (pa-
rameters of which are stored for subsequent aggregation)
and, as a consequence, to build an ensemble using a com-
putational budget comparable with the cost of training one
model. Later, Zhang et al. tried combining this idea together
with boosting in (Zhang et al., 2020).

Implicit ensembles In this approach a single model is
trained in such a way as to behave like an ensemble. But it
requires a much smaller computational budget for training.
This is achieved due to the fact that in implicit ensembles the
parameters of the models are shared, and their averaging is
returned as predictions. For example, an implicit ensemble
is the DropOut (Srivastava et al., 2014) method or the Drop-
Connect (Wan et al., 2013) method. During training, each
neuron or connection in the neural network has a chance
to collapse, and after training, a neural network is returned,
the elements of which are weighted by the probabilities
of the presence of each element. A similar idea is imple-
mented in the (Huang et al., 2016) Stochastic depth method
for (He et al., 2016) residual neural networks. There, the
residual blocks are randomly discarded during training, and
the transformation goes only through a skip connection.

2.2. Star algorithm

Unlike the ensemble problem, the aggregation problem fo-
cuses on building a good predictor in a situation where there
are already several ready-made models. The reader is re-
ferred to (Nemirovski, 2000; Tsybakov, 2003) for different
types of aggregation. It is important to mention that, in
contrast to the two-stage star procedure (Audibert, 2007),
the usual empirical risk minimization procedure among the
class of known predictors (or their convex hull) does not
necessarily lead to the optimal rate of convergence (Lecué

& Mendelson, 2009). This result was further developed in
(Liang et al., 2015), where the authors extend the theoretical
analysis of the star algorithm to the case of infinite classes
using the offset Rademacher’s complexity technique. It was
also shown in the (Vijaykumar, 2021) that these results can
be generalized to other loss functions. In particular, this
means that the star procedure can be applied to more than
just regression problems.

3. Theory
We have a Sn = (Xi, Yi)

n
i=1 sample of i.i.d. input-output

pairs (Xi, Yi) ∈ X × Y distributed according to some un-
known distribution P . We also chose a certain family of
solutions F . Our goal is to build a new predictor f̂ minimiz-
ing the excess risk

E(ĝ) := E(ĝ − Y )2 − inf
f∈F

E(f − Y )2.

Let Ê denote the empirical expectation operator

Ê(f) :=
1

n

n∑
i=1

f(Xi)

and call ĝ ∈ F a ∆-empirical risk minimizer in F if the
following inequality holds

Ê(ĝ − Y )2 ≤ min
f∈F

Ê(f − Y )2 +∆.

We suggest the next two step procedure. In the first, calcu-
late

{
ĝi
}d
i=1

– different ∆1-empirical risk minimizers in F .
And then look for a ∆2-empirical risk minizer in the next
set:

Stard
(
F , ĝ1, . . . ĝd

)
:=

{ d∑
i=1

λiĝi +
(
1−

d∑
i=1

λi

)
︸ ︷︷ ︸

λ

f

∣∣∣∣
∣∣∣∣ λi, λ ∈ [0, 1]; f ∈ F

}
. (1)

We will call the found function f̂ = f̂ (F , d, ∆1,∆2) as
Stard estimator. The main result of our work is the proof
that the proposed estimator has an optimal excess risk con-
vergence rate in the case when F is a class of sparse fully
connected neural networks F(L, p, s) (Schmidt-Hieber,
2020).

Let define the risk-minimizer in F and some sets:

Hulld
(
F
)
:=

{ d∑
i=1

λi(gi − f)

∣∣∣∣∣∣∣∣ λi ∈ [0, 1];

d∑
i=1

λi ≤ 1; f, g1 . . . gd ∈ F
}
, (2)
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f∗ := argmin
f∈F

E(f(X)− Y )2, (3)

H := F − f∗ +Hulld(F). (4)

Notice, that Stard estimator f̂ lies in H + f∗. With the
introduced notation, one of our main results is stated as
follows.
Theorem 3.1. Let f̂ is Stard estimator and H is the set
defined in 3 for F = F(L, p, s). The following expectation
bound on excess loss holds:

E E(f̂) ≤ C3.1

(
d log n

n
+∆1 +∆2

)
, (5)

where C3.1 depends only on the complexity of the class of
neural networks F .

In order to formulate an upper bound for the excess risk,
performed with a high probability, we need to impose some
constraints on the class of functions.
Definition 3.2 (Lower Isometry Bound). Class F satisfies
the lower isometry bound with some parameters 0 < η < 1
and 0 < δ < 1 if

P

(
inf

f∈F\{0}

1

n

n∑
i=1

f2(Xi)

E f2
≥ 1− η

)
≥ 1− δ

for all n ≥ n0(F , δ, η), where n0(F , δ, η) depends on the
complexity of the class of functions F .

Theorem 3.3. Let f̂ is Stard estimator and H is the set
defined in 3 for F = F(L, p, s). Assume for H the lower
isometry bound in Definition 3.2 holds with ηlib = cA.2/4
and some δlib < 1. Let ξi = Yi − f∗(Xi). Then there exist
constant C3.3 = C3.3(K,M,A,B) and absolute constants
˜cA.10, c

′
A.10, cA.10 such that

P
(
E(f̂) > C3.3

[ log n/δ
n

+∆1 +∆2

])
≤ 4(δlib + δ)

as long as n >
16(1−c′A.10)

2A

c′2A.10
∨n0(H, δlib, cA.10/4), where

A := sup
h∈H

Eh4

(Eh2)2
and B := sup

X,Y
E ξ4,

K :=

√√√√ n∑
i=1

ξ2/n+ 2 ˜cA.10

 ,

M := sup
h∈H\{0}

∑n
i=1 h(Xi)

2ξ2i
˜cA.10

∑n
i=1 h(Xi)2

.

That is, with some assumptions on the class of neural net-
works F , we again obtained the order O

(
logn
n

)
of conver-

gence of the excess risk. Note that in the general case for an
infinite class functions such an asymptotic rate with respect
to the sample size n is unimprovable (Rakhlin et al., 2017).

4. Realization

Algorithm 1 Star-d algorithm
Input: data Sn, parameters d,epochs,lr
for i = 1 to d do

ĝi = calculate erm(Sn,F , epochs, lr)
end for
f̂ = calculate erm(Sn, Stard(F), epochs, lr)
return f̂

The proposed Stard procedure can be represented by the fol-
lowing pseudocode (see Algorithm 1). The calculate erm
procedure is some optimization process that reduces the em-
pirical risk. In practice it is impossible to search for a global
empirical risk minimizer in the space of neural networks,
which is why we introduced the concept of ∆-minimizers.
As follows from our results, the more accurate the optimiza-
tion is at each step of the algorithm, the higher the accuracy
guarantee of the final predictor f̂ .

Figure 1. Illustrate Stard algorithm on NN
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Despite the fact that the second step of the star algorithm
requires an optimization procedure over some complex set
Stard, this is fairly easy to implement in practice (see Fig-
ure 1). Suppose that we have fixed some architecture of
estimator (black block), then in the first step we indepen-
dently optimize the weights of the blocks ĝi, freeze them
and in the second step we add a new block f , connecting
all of them by convex layer λi (red elements) and optimize
them. This actually iterates over all possible simplices, op-
timizing the weights of the lower block, and all possible
points within the simplex, optimizing the convex weights.

But training even one neural network is a rather complicated
process, and in our algorithm it is required to train d + 1
predictors. To solve this problem, we propose to train the
d models consequentially using the snapshot technique and
at the last stage add convex coefficients and optimize d+ 1-
st block together with them (Snap Star). This does not
contradict our theoretical result, since no conditions were
imposed on obtaining the minimizer. This solution allows
us to reuse the obtained data from previous models and save
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computing resources.

5. Experiments
As competitors for numerical experiments, we chose 3 mod-
els: training in the classical way one large neural network of
d+1 blocks (Big NN), learning d+1 blocks independently
and averaging (Ensemble), learning blocks sequentially us-
ing the snapshot technique with subsequent averaging (Snap
Ensemble). For the purposes of reproducing the results, the
code and extended tables with results are publicly available
at1. Adam was chosen as the optimizer.

BOSTON Task is to predict the value of real estate ac-
cording to some characteristic (Harrison Jr & Rubinfeld,
1978). The ratio of training and test samples is equal to
7 : 3. Standard scaler was used as preprocessing, batch size
is 32. A small fully connected ReLu neural network of 4
layers was chosen as the architecture of the neural network,
the number of neurons on the first layer is 128, then with the
growth of the layer it decreases by 2 times, DropOut with
parameter p and batch normalization are applied between
the layers. Averaging over 5 runs.

Table 1. BOSTON (epochs = 30, p = 0.1, lr = 0.01)

NAME D MSE MAE R2

SNAP STAR 5 10.881±0.575 2.229 0.869
SNAP ENSEMBLE 5 11.862±0.616 2.306 0.858
ENSEMBLE 5 12.568±0.878 2.399 0.849
BIG NN 5 12.068±0.860 2.411 0.855

SNAP STAR 4 11.276±0.582 2.269 0.865
SNAP ENSEMBLE 4 11.819±0.341 2.316 0.858
ENSEMBLE 4 12.059±0.614 2.365 0.855
BIG NN 4 12.556±0.904 2.383 0.849

FMNIST The second experiment was carried out on the
Fashion Mnist dataset (Xiao et al., 2017), which consists of
70, 000 images (28 × 28 pixels). It is required to classify
images by clothing classes. The ratio of training and test
samples is equal to 6 : 1. No scaler is used, batch size is
64. A simple convolutional network LeNet was chosen as a
solution to this task. Averaging over 3 runs.

6. Discussion
The proposed algorithm performs well in the classification
problem with cross-entropy loss, although this paper only
presents a theoretical analysis for regression problem.

In fact, the star estimator we proposed is a multidimensional
analogue of the Audibert’s algorithm. It combines optimal
orders as a solution to the aggregation problem of model

1https://github.com/mordiggian174/star-ensembling

Table 2. FMNIST (epochs = 5, lr = 0.001)

NAME D ACCURACY ENTROPY

SNAP STAR 3 0.900±0.002 0.284±0.008
SNAP ENSEMBLE 3 0.897±0.003 0.290±0.009
ENSEMBLE 3 0.887±0.001 0.310±0.005
BIG NN 3 0.890±0.010 0.299±0.022

SNAP STAR 2 0.894±0.007 0.294±0.020
SNAP ENSEMBLE 2 0.891±0.006 0.302±0.021
ENSEMBLE 2 0.886±0.004 0.313±0.008
BIG NN 2 0.892±0.003 0.304±0.007

SNAP STAR. 1 0.891±0.002 0.299±0.006
SNAP ENSEMBLE 1 0.889±0.001 0.304±0.007
ENSEMBLE 1 0.886±0.005 0.314±0.011
BIG NN 1 0.886±0.002 0.315±0.005

selection, and at the same time behaves like an ensemble
method. This decision can be viewed from 3 sides at once.

Stard algorithm as a new learning algorithm
It is worth noting that if we spend a fixed amount of com-
puting resources B for each call to the optimization process
calculate erm, then the total budget of our algorithm is
about (d+1) ·B. But the surprising fact is that the result ob-
tained is able to compete with other methods for training the
final large neural network from d+ 1 blocks, although our
theoretical analysis guarantees optimality only in compari-
son with the best single block architecture model. Thus, the
procedure we proposed can be perceived as a new method
for training neural networks with block architecture.

Stard algorithm as a new way of model aggregation
Also note that the predictors ĝi need not be trained in the
first step. Then the Stard algorithm can be perceived as an
algorithm for aggregating these models. It will consist of the
following: a new predictive model f is added, a connecting
layer, and the process of optimization by a parameter is
started. At the same time, generally speaking, it is not
necessary to have all blocks be of the same architecture.
As intuition suggests, the main thing is that the expressive
abilities of those classes of solutions to which the predictors
given to us will relate should be approximately equal. Then
it will be possible to formally consider the union of those
decision classes to which each of the predictors belongs, and
consider them as ∆-minimizers from the following class
F =

⋃
i

Fi, where given predictors ĝi ∈ Fi (which may be

heterogeneous).

Stard algorithm as a new way to budget build ensemble
In combination with the snapshot technique, our algorithm
shows good results with an extremely small number of
epochs. Classical methods require more computational re-
sources to achieve the same performance.
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A. Proofs
The main result of our work is the proof that the proposed estimator has an optimal excess risk convergence rate in the case
when F is a class of fully connected neural networks. It is defined by the choice of the activation function σ : R → R and
the network architecture. We study neural network with activation function ReLu:

σ(x) := max(x, 0).

For v = (v1, . . . , vr) ∈ Rr define shifted activation function σv : Rr → Rr:

σv(x) :=
(
σ(xi − vi)

)r
i=1

.

The network architecture (L,p) consists of a positive integer L called the number of hidden layers or depth and a width
vector p = (p0, . . . , pL+1) ∈ NL+2. A neural network with network architecture (L,p) is then any function of the form

f(x) = WLσvLWL−1σvL−1
. . .W1σv1W0x, (6)

where Wj is a pj+1 × pj matrix and vi ∈ Rpi is a shift vector.

We will focus on the case when the model parameters satisfy some constraint. Denote ∥Wj∥∞ the maximum-entry norm
of Wj , ∥Wj∥0 the number of non-zero/active entries of Wj then the space of network functions with given network
architecture and network parameters bounded by one is

F(L,p) :=
{
fof the form (6) : max

j=0,...,L
∥Wj∥∞ ∨ ∥vj∥∞ ≤ 1

}
and the s-sparse networks are given by

F(L,p, s) :=
{
f ∈ F(L,p) :

L∑
j=0

∥Wj∥0 + ∥vj∥0 ≤ s

}
.

Let’s denote by N∞(F , ε), N2(F , ε) the size of the ε-net of F in the metric space L∞ and L2, respectively. Then from
Lemma 5 in (Schmidt-Hieber, 2020) we have

∀f ∈ F(L, p, s) : ∥f∥∞ ≤ V (L+ 1) (7)

and
logN2(F(L, p, s), δ) ≤ logN∞(F(L, p, s), δ) ≤ (s+ 1) log(2δ−1(L+ 1)V 2), (8)

where

V :=

L+1∏
l=0

(pl + 1). (9)

The combination of the following 2 Lemmas is a generalization of the geometric inequality proved by (Liang et al., 2015).
In many respects the scheme of the proof is similar.

Lemma A.1. (Geometric inequality for the exact Stard estimator in the second step)
Let ĝ1 . . . ĝd be ∆1-empirical risk minimizers from the first step of the Stard procedure, f̃ be the exact minimizer from the

second step of the Stard procedure. Then, for cA.1 = 1
18 the following inequality holds:

Ê(h− Y )2 − Ê(f̃ − Y )2 ≥ cA.1 Ê(f̃ − h)2 − 2∆1. (10)

Proof. For any function f, g we denote the empirical ℓ2 distance to be ∥f∥n :=
[
Ê f2

] 1
2

, empirical product to be

⟨f, g⟩n := Ê [fg] and the square of the empirical distance between F and Y as r1. By definition of Stard estimator for
some λ ∈ [0; 1] we have:

f̃ = (1− λ)ĝ + λf,
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where ĝ lies in a convex hull of ∆1-empirical risk minimizers {ĝi}di=1. Denote the balls centered at Y to be B1 := B(Y,√r1),
B′
1 := B(Y, ∥ĝ−Y ∥n) and B2 := B(Y, ∥f̃ −Y ∥n). The corresponding spheres will be called S1,S ′

1,S2. We have B2 ⊆ B1

and B2 ⊆ B′
1. Denote by C the conic hull of B2 with origin ĝ and define the spherical cap outside the cone C to be S = S ′

1 \C.

First, f̃ ∈ B2 and it is a contact point of C and S2. Indeed, f̃ is necessarily on a line segment between ĝ and a point outside
B1 that does not pass through the interior of B2 by optimality of f̃ . Let K be the set of all contact points of C and S2 –
potential locations of f̃ .

Second, for any h ∈ F , we have ∥h − Y ∥n ≥ √
r1 i.e. any h ∈ F is not in the interior of B1. Furthermore, let C′ be

bounded subset cone C cut at K. Thus h ∈ (intC)c ∩ (B1)
c or h ∈ T , where T := (intC′) ∩ (B1)

c.

For any h ∈ F consider the two dimensional plane L that passes through three points ĝ, Y, h, depicted in Figure 2. Observe
that the left-hand side of the desired inequality (10) is constant as f̃ ranges over K. The maximization of ∥h− f ′∥2n over
f ′ ∈ K is achieved by f ′ ∈ K ∩ L. Hence, to prove the desired inequality, we can restrict our attention to the plane L and
f ′. Let h⊥ be the projection of h onto the shell L ∩ S′

1. By the geometry of the cone and triangle inequality we have:

∥f ′ − ĝ∥n ≥ 1

2
∥ĝ − h⊥∥n ≥ 1

2
(∥f ′ − h⊥∥n − ∥f ′ − ĝ∥n) ,

and, hence, ∥f ′ − ĝ∥n ≥ ∥f ′ − h⊥∥n/3. By the Pythagorean theorem,

∥h⊥ − Y ∥2n − ∥f ′ − Y ∥2n = ∥ĝ − Y ∥2n − ∥f ′ − Y ∥2n = ∥f ′ − ĝ∥2n ≥ 1

9
∥f ′ − h⊥∥2n.

We can now extend this claim to h. Indeed, due to the geometry of the projection h → h⊥ and the fact that h ∈
(intC)c ∩ (intB1)

c or h ∈ T there are 2 possibilities:

a) h ∈ (B′
1)

c. Then ⟨h⊥ − Y, h⊥ − h⟩n ≤ 0;

b) h ∈ B′
1. Then, since h ∈ (B1)

c, we have

⟨h⊥ − Y, h⊥ − h⟩n ≤
(
∥h− Y ∥+ ∥h− h⊥∥

)
∥h− h⊥∥ ≤ ∥h⊥ − Y ∥2n − ∥h− Y ∥2n ≤ ∆1.

In both cases, the following inequality is true

∥h− Y ∥2n − ∥f ′ − Y ∥2n = ∥h⊥ − h∥2n − 2⟨h⊥ − Y, h⊥ − h⟩n + (∥h⊥ − Y ∥2n − ∥f ′ − Y ∥2n)

≥ ∥h⊥ − h∥2n − 2∆1 +
1

9
∥f ′ − Y ∥2n ≥ 1

18
∥f ′ − h∥2n − 2∆1.

Lemma A.2 (Geometric Inequality for ∆-empirical minimizers). Let ĝ1 . . . ĝd be ∆1-empirical risk minimizers from the
first step of the Stard procedure, and f̂ be the ∆2-empirical risk minimizer from the second step of the Stard procedure.
Then, for any h ∈ F and cA.2 = 1

36 the following inequality holds:

Ê(h− Y )2 − Ê(f̂ − Y )2 ≥ cA.2Ê(f̂ − h)2 − 2(1 + cA.2)[∆1 +∆2].

Proof. Since Lemma A.1 was actually proven for any f ∈ K, let f ′′ be the closest point to f̂ from K. For this f ′′ the
inequality (10) holds. Similarly to Lemma A.1, there are 2 options: either f̂ ∈ (intC)c, or f̂ ∈ T .

a) Let f̂ ∈ (intC)c, then ⟨f̂ − f ′′, f ′′ − Y ⟩ ≥ 0. Since f̂ is ∆2-empirical risk minimizer, we have ∥f̂ − f ′′∥2n + 2⟨f̂ −
f ′′, f ′′ − Y ⟩+ ∥f ′′ − Y ∥2n = ∥f̂ − Y ∥2n ≤ ∥f ′′ − Y ∥2n +∆2. It means, that ∥f̂ − f ′′∥2n ≤ ∆2.

b) Let f̂ ∈ T , then by the cosine theorem (as depicted on Figure 2, L is the two dimensional plane which passes through
f̂ , ĝ, Y ):

∥f̂ − f ′′∥2n = ∥f ′′ − Y ∥2n + ∥f̂ − Y ∥2n − 2∥f ′′ − Y ∥n∥f̂ − Y ∥n cos(φ′).
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Figure 2. The cut surface L

But cos(φ′) ≥ cos(φ) = ∥f ′′−Y ∥n

∥ĝ−Y ∥n
and ∥f̂ − Y ∥2n ≥ r1. Then we have:

∥f̂ − f ′′∥2n ≤ ∆2 + 2∥f ′′ − Y ∥2n

(
1− ∥f̂ − Y ∥n

∥ĝ − Y ∥n

)

≤ ∆2 + 2
∥f ′′ − Y ∥2n
∥ĝ − Y ∥n

(
∥ĝ − Y ∥2n − ∥f̂ − Y ∥2n
∥ĝ − Y ∥n + ∥f̂ − Y ∥n

)
≤ ∆1 +∆2.

Lemma A.1 states:
∥h− Y ∥2n ≥ ∥f ′′ − Y ∥2n + cA.1∥f ′′ − h∥2n − 2∆1.

By using the triangle inequality and the convexity of the quadratic function, we can get the following bound

cA.1

2
∥f̂ − h∥2n ≤ cA.1

(
∥f̂ − f ′′∥2n + ∥f ′′ − h∥2n

)
≤ cA.1[∆2 +∆1] + cA.1∥f ′′ − h∥2n.

Combining everything together, we get the required result for the constant cA.2 = cA.1

2 = 1
36 :

Ê(h− Y )2 − Ê(f̂ − Y )2 ≥ cA.2 · Ê(f̂ − h)2 − 2(1 + cA.2)[∆1 +∆2].

For convenience, we introduce a ∆-excess risk

E∆(ĝ) := E(ĝ − Y )2 − inf
f∈F

E(f − Y )2 − 2(1 + cA.2)[∆1 +∆2],

then the following 2 statements are the direct consequences of the corresponding statements from the article (Liang et al.,
2015). The only difference is that in our case the geometric inequality has terms on the right side with minimization errors
∆1,∆2. Also our definition of the set H is different, but all that was needed from it was the property that f̂ lies in H+ f∗.
For brevity, we will not repeat the proofs, but only indicate the numbers of the corresponding results in the titles of the
assertions. We will also proceed for statements the proofs for which we slightly modify or use without changes.
Corollary A.3 (Corollary 3). Conditioned on the data {(Xi, Yi) : 1 ≤ i ≤ n}, we have a deterministic upper bound for the
Stard estimator:

E∆(f̂) ≤ (Ê− E)[2(f∗ − Y )(f∗ − f̂)] + E(f∗ − f̂)2 − (1 + cA.2) · Ê(f∗ − f̂)2.
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Theorem A.4 (Theorem 4). The following expectation bound on excess loss of the Stard estimator holds:

E E∆(f̂) ≤ (2F ′ + F (2 + cA.2)/2) · Eσ sup
h∈H

{
1

n

n∑
i=1

2σih(Xi)− cA.4h(Xi)
2

}
,

where σ1, . . . σn are independent Rademacher random variables, cA.4 = min
{

cA.2

4F ′ ,
cA.2

4F (2+cA.2)

}
, F = supf∈F |f |∞ and

F ′ = supF |Y − f |∞ almost surely.
Theorem A.5 (Theorem 7). Assume the lower isometry bound in Definition 3.2 holds with ηlib = cA.2/4 and some δlib < 1
and H is the set defined in 3. Let ξi = Yi − f∗(Xi). Define

A := sup
h∈H

Eh4

(Eh2)2
and B := sup

X,Y
E ξ4.

Then there exist two absolute constants c′A.5, ˜cA.5 > 0 (which only depend on cA.2), such that

P
(
E∆(f̂) > 4u

)
≤ 4δlib + 4P

(
sup
h∈H

1

n

n∑
i=1

σiξih(Xi)− ˜cA.5h(Xi)
2 > u

)
for any

u >
32

√
AB

c′A.5

1

n

as long as n >
16(1−c′A.5)

2A

c′2A.5
∨ n0(H, δlib, cA.2/4).

Lemma A.6 (Lemma 15). The offset Rademacher complexity for H is bounded as:

Eσ sup
H

{
1

n

n∑
i=1

2σiξih(Xi)− Ch(Xi)
2

}
≤ K(C)ε+M(C) · logN2(H, ε)

n

and with probability at least 1− δ

sup
H

{
1

n

n∑
i=1

2σiξih(Xi)− Ch(Xi)
2

}
≤ K(C)ε+M(C) ·

logN2(H, ε) + log 1
δ

n
,

where

K(C) := 2

√√√√ n∑
i=1

ξ2/n+ C

 , M(C) := sup
h∈H\{0}

4

∑n
i=1 h(Xi)

2ξ2i
C
∑n

i=1 h(Xi)2
. (11)

Proof. Let N2(H, ε) be the ε-net of the H of size at most N2(H, ε) and v[h] be the closest point from this net for function
h ∈ H, i.e. ∥h− v[h]∥2 ≤ ε. By using the inequality v[h]2i ≤ 2

(
h2
i + (v[h]i − hi)

2
)
, we can get next upper bound:{

1

n

n∑
i=1

2σiξih(Xi)− Ch(Xi)
2

}

≤

{
1

n

n∑
i=1

2σiξi(h(Xi)− v[h](Xi)) + C
(
v[h]2(Xi)/2− h2(Xi)

)}

+
1

n
sup

v∈N2(H,ε)

{
n∑

i=1

2σiξiv(Xi)−
C

2
v(Xi)

2

}

≤ 2ε

√√√√ n∑
i=1

ξ2i /n+ C

+
1

n
sup

v∈N2(H,ε)

{
n∑

i=1

2σiξiv(Xi)−
C

2
v(Xi)

2

}
.

The right summarand is supremum over set of cardinality not more than N2(H, ε). By using Lemma A.11, we acquire the
expected estimates.



SnapStar Ensembling

We have now obtained, using the offset Rademacher complexity technique, the upper bound on excess risk in terms of the
coverage size of the set H. To get the desired result, we need to obtain an upper bound on the size of the cover H in terms of
the size of the cover F .

Lemma A.7. For any scale ε > 0, the covering number of F ⊆ V (L+ 1) · B2 (where B2 is a sphere of radius one in space
with norm ∥ · ∥n) and that of H are bounded in the sense:

logN2(F , ε) ≤ logN2(H, ε) ≤ (d+ 2)

[
logN2

(
F ,

ε

3(d+ 1)

)
+ log

6(d+ 1)V (L+ 1)

ε

]
.

Proof. If we define as N(F , ε) the ε-net cardinality no more then N (F , ε), then the following is true: N(F1, ε1) +
N(F1, ε2) is (ε1 + ε2)-net for F1 + F2. Hence, N (F1 + F2, ε1 + ε2) ≤ N (F1, ε1) · N (F2, ε2) . With this we can
obtain the following upper bound

N2(H, ε) ≤ N2(F +Hulld, ε) ≤ N2

(
F ,

ε

3

)
· N2

(
Hulld,

2ε

3

)
.

But since Hulld is the sum of d+ 1 functions from F with coefficients in [−1; 1], by the inequaility (7), we can cover this
with a net of size no more than [

N2

(
F ,

ε

3(d+ 1)

)
· 6(d+ 1)V (L+ 1)

ε

]d+1

.

Note that to obtain the required orders, we only need coverage with ε = 1/n.

Corollary A.8. Let H defined in 3 for F = F (L, p, s), then for V defined in 9 holds

logN2

(
H,

1

n

)
≤ cA.8d s log

(
V Lnd

)
,

where cA.8 is an indepedent constant.

Proof. By lemma A.7 and inequality 8, we have

logN2(H, 1/n) ≤ (d+ 2)

[
logN2

(
F(L, p, s),

1

3n(d+ 1)

)
+ log 6n(d+ 1)V (L+ 1)

]
≤ (d+ 2)

[
(s+ 1) log

(
2V 2(L+ 1)(3n(d+ 1))

)
+ log (6n(d+ 1)V (L+ 1))

]
.

We are now fully prepared to prove the two main results.

Theorem A.9. Let f̂ be a Stard estimator and H be the set defined in 3 for F = F(L, p, s). The following expectation
bound on excess loss holds:

E E∆(f̂) ≤ 2(F ′ + V (L+ 1)) ·
[
K(C)

n
+M(C) · cA.8d s log (V Lnd)

n

]
,

where K(C), M(C) defined in (11) for constants

C = min

{
cA.2

4F ′ ,
cA.2

4V (L+ 1)(2 + cA.2)

}
, F ′ = sup

F
|Y − f |∞.

Proof. By using Theorem A.4 and inequality 7 we have

E E∆(f̂) ≤ (2F ′ + V (L+ 1)(2 + cA.2)/2) · Eσ sup
h∈H

{
1

n

n∑
i=1

2σih(Xi)− Ch(Xi)
2

}
,
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where C = min
{

cA.2

4F ′ ,
cA.2

4V (L+1)(2+cA.2)

}
, F ′ = supF |Y − f |∞ almost surely.

By using Lemma A.6 and corollary A.8 we get desired result

Eσ sup
H

{
1

n

n∑
i=1

2σiξih(Xi)− Ch(Xi)
2

}
≤ K(C)

n
+M(C) ·

cA.8d s log
(
V Lnd

)
n

.

Theorem A.10. Let f̂ be a Stard estimator and let H be the set defined in 3 for F = F(L, p, s). Assume for H the lower
isometry bound in Definition 3.2 holds with ηlib = cA.2/4 and some δlib < 1. Let ξi = Yi − f∗(Xi). Define

A := sup
h∈H

Eh4

(Eh2)2
and B := sup

X,Y
E ξ4.

Then there exist 3 absolute constants c′A.10, ˜cA.10, cA.10 > 0 (which only depend on cA.2), such that

P
(
E∆(f̂) > 4D

)
≤ 4(δlib + δ)

as long as n >
16(1−c′A.10)

2A

c′2A.10
∨ n0(H, δlib, cA.10/4), where

K :=

√√√√ n∑
i=1

ξ2/n+ 2 ˜cA.10

 , M := sup
h∈H\{0}

∑n
i=1 h(Xi)

2ξ2i
˜cA.10

∑n
i=1 h(Xi)2

,

D := max

(
K

n
+M ·

cA.8d s log
(
V Lnd

)
+ log 1

δ

n
,
32

√
AB

c′A.10

1

n

)
and cA.8 is an independent constant.

Proof. By using Theorem A.5 for any u > 32
√
AB

c′A.5

1
n we have

P
(
E∆(f̂) > 4u

)
≤ 4δlib + 4P

(
sup
h∈H

1

n

n∑
i=1

σiξih(Xi)− ˜cA.5h(Xi)
2 > u

)

as long as n >
16(1−c′A.5)

2A

c′2A.5
∨ n0(H, δlib, cA.2/4).

By using Lemmas A.6 and A.8 we have with probability no more than δ for any C > 0 :

sup
H

{
1

n

n∑
i=1

σiξih(Xi)−
C

2
h(Xi)

2

}
≥ K(C)

2
ε+

M(C)

2
·
logN2(H, ε) + log 1

δ

n
,

where K(C), M(C) are defined in (11). Combining this inequality for C = 2 ˜cA.10 = 2 ˜cA.5 and c′A.10 = c′A.5, cA.10 = cA.2

we get the required result.

Lemma A.11 (Lemma 9). Let V ⊂ Rn be a finite set, |V | = N . Then, for any C > 0 :

Eσ max
v∈V

[
1

n

n∑
i=1

σiξiv(Xi)− Cv(Xi)
2

]
≤ M

logN

n
.

For any δ > 0:

Pσ

(
max
v∈V

[
1

n

n∑
i=1

σiξiv(Xi)− Cv(Xi)
2

]
> M

logN + log 1
δ

n

)
≤ δ,

where

M := sup
v∈V \{0}

∑n
i=1 v(Xi)

2ξ2i
2C
∑n

i=1 v(Xi)2
.


