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Abstract
The recent deep learning breakthroughs in lan-
guage and vision tasks can be mainly attributed
to large-scale transformers. Unfortunately, their
massive size and high compute requirement have
limited their use in resource-constrained environ-
ments. Dynamic neural networks could poten-
tially reduce the amount of compute requirement
by dynamically adjusting the computational path
based on the input. Similar to soft attention, this
work presents a simple way of constructing an or-
acle function that enables a transformer network
to determine the dependency between its layers.
It can then be used as a strategy to skip layers
without a reinforcement learning agent. We show
that such a model learns to skip, on average, half
of its layers for each sample in a batch input.

1. Introduction
Transformers have been a major force behind the recent suc-
cess of deep learning. These models, at their core, employ a
multi-head self-attention mechanism that enables them to
explicitly define relationships between inputs in terms of
attention score. This mechanism has been shown to leverage
very large datasets and performs significantly better than
previous methods in NLP tasks (Devlin et al., 2018; Brown
et al., 2020; Liu et al., 2019). Furthermore, the self-attention
building block increases the model’s explainability, helping
researchers to understand neural networks by probing the at-
tention heads. Later, (Dosovitskiy et al., 2021) showed that
transformers could also be applied to vision tasks with little
to no modification and perform on-par with CNN-based
models. This unique ability of transformers, generalizing
to different kinds of tasks (vision, language, multi-modal
learning), made them more ubiquitous in the literature.

The past few years have seen significant advances in dy-
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namic neural network research as well. These networks
modify their inner workings (parameters, layers, connec-
tivity) based on an input sample. Hence, a dynamic neural
network can be perceived as an ensemble model in which a
sub-model in a model can act upon a certain type of input.
Thus, they promise efficiency, better representation power,
generality and interpretability (Han et al., 2021).

(Dehghani et al., 2019) introduced the Universal Trans-
former (UT) architecture which applied the concept of recur-
rence, not over the input symbols, but over the depth-wise
revision of the symbols. The technique only uses a single
layer, which is repeatedly executed over the inputs. This
enables the model to determine the depth length, and thus
incorporate dynamic halting that is applied per-symbol level.
Hence, some of the symbols in a given input may not halt
with other symbols, in which case, the successive depth is
just a copy of the halted symbols.

(Elbayad et al., 2020) improved the Universal Transformer
by increasing the model capacity through incorporating addi-
tional layers. Their model, the Adaptive Depth Transformer,
introduced several ways to estimate the depth and exit strate-
gies. The token-specific depth determines the depth for
every token in a block. For the sequence-specific depth esti-
mation, an oracle function, given the average of the tokens
in a block, predicts the depth.

(Wang et al., 2018) proposed SkipNet which is partly an
inspiration to our work. SkipNet employed gating modules
that decide whether to skip residual blocks or not. The gat-
ing functions are implemented in three ways: FFGate-I and
FFGate-II are standard CNN based networks where FFGate-
II has higher capacity. RNNGate on the other hand uses
Recurrent Neural Network (RNN) in order to share param-
eters across multiple blocks. The work also introduced a
reinforcement learning agent (Hybrid-RL) that mitigates the
non-differentiable function of executing the gates.

In this work in progress, we propose a simple technique
that makes transformers dynamic through soft-attention and
layer skipping mechanisms. The layer skipping transformer
is important because, as the self-attention mechanism incurs
quadratic memory and compute cost, skipping a layer re-
duces the resource need. However, this paper presents the
dynamic transformers evaluated on a limited experiment set
due to resource constraints. Hence, instead of the literature
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standard datasets such as ImageNet, a relatively smaller ViT
model is tested on CIFAR100 to showcase the feasibility
of the concept. The models are discussed in section 2 and
findings from the experiments are presented in section 3.
Finally, although the technique presented here is relatively
simple and is not novel by itself, appendix A discusses the
reasoning and the hypothesis behind it.

2. Models
2.1. Weighted Stochastic Dense Connection (WSDC)

DenseNet (Huang et al., 2017) demonstrated that dense
connectivity of current and previous layer activations is
advantageous because it allows for feature reuse. The input
passes through several layers in a given block, and at each
layer, activations from previous layers are concatenated and
fed to the next layer. The authors demonstrated that a layer
may often attend to an output from a much lower layer rather
than an immediately preceding layer. This increased the
network’s expressivity, resulting in feature reuse. Inspired
by the findings, we set out to create a similar mechanism for
transformers in the hope that the upper layers would have
direct access to lower layer activations. In a transformer
network, however, unlike DenseNet, concatenation of the
layer activations results in a much higher computation and
is thus replaced by the weighted average of the activations.
The activation weighting mechanism is described further
below.

Conventions: For the equations below, xj represents inputs
to the jth transformer layer Tj (MSA + FFN) (Vaswani
et al., 2017). aj represent activations of Tj . In a typical
transformer model, aj = xj+1 as the activations pass with-
out any modification. However, the formulations presented
here apply some kind of function on the aj resulting in dif-
ferent xj+1. x0 is the image patch, x1 = a0 is the encoding
of the patches into the transformers hidden size. a1 is the
output of the first transformer layer T1 and x2 = a1.

As a baseline, the standard ViT architecture (Dosovitskiy
et al., 2021) with minimized capacity (due to computational
constraints) is trained from scratch. In appendix B, table 2
shows the hyperparamaters the base model was trained on.

(Simoulin & Crabbé, 2021) hypothesized that the CLS token
aggregates the representation of the entire input sequence,
which is also supported by the fact that this token is used
for classification purposes in the final layer of ViTs (Doso-
vitskiy et al., 2021). Hence, one can safely assume that an
oracle function q∗ could predict what the input to a layer
should be given this token from an immediately preced-
ing activation. For brevity, cj represents the CLS token in
xj . An oracle function q∗j is a single layer feed-forward
network that is fed cj and predicts weights for each acti-
vation ak ∈ {a0, a1, ...aj−1} using softmax. This oracle

Figure 1. Layer dependency visualization for WDC model.
T1, T2, .., T9 are transformer layers. It should be read vertically:
how much Tx depends on its preceding layers. Ex: T2 depends 95%
on layer 1 and 5% on layer 0. T3 depends 66% on layer 2, 11% on
layer 1 and 23% on layer 0.

function q∗j is implemented for each layer and will also be
utilized during inference. The predicted weights are then
used to aggregate all the previous activations into a single
activation as shown in eq (1) to (4).

wj = softmax(q∗j (cj)) (1)
∗wj = dropout(wj) (2)

xj =

j−1∑
k=0

∗wk
j ak (3)

aj = Tj(xj) (4)

The dropout is applied to the weights so that complete de-
pendence on the previous individual layers is minimized. It
increases quadratically from 0.0 to 0.25 as the number of
layers increases. Passing the activation weights wj without
applying dropout in eq (2) results in weighted dense con-
nection (WDC). While this model (WDC) didn’t improve
performance upon the base model, it brought significant
insight on how the oracle mechanism operates. The depen-
dency relationship can be visualized using the weights in
eq (1). Fig 1 and 2 shows the dependency graph after col-
lecting weights for 256 images and averaging them across
the images. Figure 1 shows that like DenseNet, in WDC,
some of the upper layers directly utilize lower layer acti-
vations, ignoring the ones preceding them. For example
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T9 depends 26% on layer-0 (the patch encoding layer) and
43% on layer-7. Layer T8, on the other hand, relies 81% on
layer-4.

2.2. Dynamic Transformer (DT)

WDC revealed an important fact: layers do not always rely
on their immediately preceding activations, and thus they
can utilize direct access to lower layer activations. Similar
to SkipNet (Wang et al., 2018), this can be thought of as an
oracle function guiding lower layer activations to pass to
upper layers without routing through middle layers. Hence,
the oracle function in WDC can be modified to predict
whether to skip the next layer or not, given the CLS token
and a skip history.

For each sample in a batch, for j ≥ 2, the oracle function q∗j
predicts a sigmoid-based skip score sj given the CLS token
cj and the skip history hj . Then, based on this score, the
next layer will be skipped or not. The skip history is simply
a concatenation of previous skip scores s1, s2, .., sj−1 . Ini-
tially, s1 = 1 as all samples must pass through at least in one
transformer layer. Those samples xT

j with sj >= 0.5 are ex-
tracted from the batch and pass through the next layer. The
remaining, xI

j , will be cloned to become aIj . After the first
group passes through the transformer layer Tj , the activa-
tions aTj will be merged with the aIj . The merging is simply
placing each activation in its original index. Equations (5) -
(12) show how the skipping mechanism is implemented.

hj = concat(s1, s2, .., sj−1) (5)
skip score = q∗j (cj , hj) (6)

sj = sigmoid(skip score) (7)

xT
j = xj(sj >= 0.5) (8)

xI
j = xj(sj < 0.5) (9)

aTj = Tj(x
T
j ) (10)

aIj = xI
j (11)

aj = merge(aTj , a
I
j ) (12)

The final activation aj passes through one more transformer
layer followed by a classifier layer. (Wang et al., 2018)
used a Hybrid-RL technique where an RL agent handles
the un-differentiable function that decides whether to skip
a layer or not. In our implementation, a skip score of each
sample sj , is stored and fed to the oracle on each successive
layer, which allows the network to propagate these decisions
up to the final layer. However, a naive implementation of
this oracle function results in a model that maximizes layer
connections, leading to a full wired network. To mitigate
this issue, a skip loss L∫ that is dependent on the skip score
prediction can be constructed, forcing the model for a higher
amount of skips. Combining it with cross entropy loss L⌋,

the final loss L is given by:

L∫ =
1

L

L∑
l=1

(skip score)2 (13)

L = L⌋ + L∫ (14)

L is the number of layers that operate based on the oracle.
This simple technique allows the optimizer to update the
oracle function based on its decision. However, such a mech-
anism comes with a downside of its own and is discussed in
subsection 3.2. The memory cost to implement the oracle
function is 0.6%, a 0.1M parameter increase on a 14.4M
parameter model. In general, if a transformer model has
L number of layers and a hidden size of h, the amount of
parameters that is required to construct the oracle functions
for all the layers is:

L∑
l=2

(h+ l − 1) (15)

This is because, at each layer, a single layer FFN predicts
whether to skip the next layer or not, given a CLS token size
of h and previous skip history of length l − 1.

3. Experiment and Result
Each of the models was run for 200 epochs with the hyper-
parameter specified in table 2. As the batch size increases
from 256 to 1568, all models perform better. However, in
the DT model case (2.2), we found that it is consistently
and significantly sub-optimal when compared to the base
model for the same batch size. Precisely, to achieve compa-
rable level of performance, it needed twice the batch size
of the base model. Investigating this, we discovered that,
due to the skipping mechanism, the model processes only
about half of the given batch in a layer, which explains why
it requires twice the batch size to compete with the base-
line. Hence, to make a fair comparison, the batch size was
doubled to 1568 and the epoch increased to 400, as higher
batch size needs more epochs in all the models. Finally, the
experiments were run on 10 and 16-layer models to evaluate
how scale affects the models.

3.1. Performance

As table 1 shows, in the 10-layer case, WSDC has shown
better performance than the base model, while DT and other
models were sub-optimal. In 16-layer case, however, WSDC
came second to the base model and was lower in perfor-
mance when compared to the layer 10 setting. It’s probable
that a better dropout rate fixes the performance drop as it is
the only factor that is affected by the scale increase.



Dynamic Transformer Networks

Model val-acc-10 val-acc-16
Base 68.11 68.29
WDC 67.46 67.55

WSDC 68.98 67.76
DT 67.18 66.62

Table 1. Performance of the models on CIFAR100. val-acc-10
and val-acc-16 are the validation accuracy of the 10 and 16 layer
models respectively.

3.2. Skip-Connection Loss

The dynamic transformer (DT) learns faster in both layer-10
and layer-16 models. However, validation accuracy stops
increasing even though it did not overfit. We believe that
this is because of the loss that punishes the connections of
layers in equation 13. If roughly half of the connections
are skipped, the skip loss becomes zero. This is a strong
bias and thus not optimized. Thus, an RL agent seems more
appropriate to make better decisions while skipping layers
as rewards can be driven from both the train losses and
accuracy.

3.3. Observation

• As figure 6 shows, the base model overfits on the train
dataset while the proposed models achieve similar val-
idation accuracy without overfitting as much as the
base model. It is possible that proper hypermarame-
ter tuning might unlock their learning capacity as the
base model’s hyperparamaters may not work well due
to the extra manipulations applied on the layer activa-
tions. The performance of the WSDC model in the
layer-10-model is an indicator of this assumption.

• In WDC case (figure 1), layer 9 receives 26% of its
information from layer 1, which is the patch encoding
layer. Consequently, it almost doesn’t require its pre-
ceding layer’s activation. There is a consistent reliance
of layers on their preceding outputs up until layers 3,
similar to a standard transformer network. This pattern
breaks after the fifth layer, implying that the construc-
tion of higher level representations still necessitates
low level features such as raw patch encoding outputs.
Similar dynamics is visible in the WSDC model case
(figure 2).

• In the WSDC case (figure 2), because of the dropout
on the weights, the model produced almost evenly dis-
tributed weights over the previous activations instead of
extreme values. It’s similar to stochastic depth (Huang
et al., 2016) but in this case, the model can chose
which lower layer to connect and how strongly. Given
the success of Stochastic Depth as a regularizer, such
wiring can be expected to benefit deeper ViT’s through

improved gradient flow.

• Furthermore, we can see how hyperparameter affects
a model. Figure 3 depicts the weight visualization of
WDC with dropout of 0.0 while figure 4 shows visu-
alization of a model with drop 0.2. In both cases, the
left-side figures show the weight predictions of cor-
rectly predicted images while right-side figures show
weight prediction for incorrectly predicted images. In
the model that was trained using dropout = 0.0, layer
9 gets about 50% of its information from the patch
encoding layer. This is very different from the model
trained with dropout = 0.2 which shifts majority of
this dependency to layer 7, although layer 9 still relies
26% on the encoding layer. Similar behaviour is vis-
ible in WSDC (figure 2) case. Due to both the dense
connection and normal dropouts, upper layers are more
dependent on layers j >= 3. It seems that, the dropout
hyperparamater forces the model to rely on higher level
features.

4. Conclusion
This paper presents soft-attention and layer skipping dy-
namic transformer networks. The methods heavily rely on
the CLS token to determine how inputs are routed as they
pass through layers. In the case of weighted stochastic depth
connection (WSDC), an oracle function, similar to attention,
determines the weights of previous activation. In the layer
skipping dynamic transformer (DT) case, the oracle function
determines whether a sample should pass through a layer
based on the skip history and the CLS token. While WDC
allows for better transformer explainability, DT provides
memory and compute efficiency, potentially allowing edge
devices to enjoy the benefits of transformers.

Being an unfinished work, there are several analyses that
need to be done. The DT model can be much more efficient
in both resource and performance by utilizing an RL agent
and we predict that this RL agent will cost less than the
current oracle function. The linear cost in equation 15 can
be reduced to a constant cost that is independent of the
number of layers. It’s also worth combining DT and WSDC
to take advantage of layer skipping and the sum of weighted
activations. The models also provide ample opportunity
from explainablity standpoint, as probing the weights and
layers is now much easier. Finally, hyperparameter tuning
and testing the models on state of the art experiment settings
are critical.
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A. Motivation
In the original Vision Transformer paper (Dosovitskiy et al., 2021), the authors showed that the ViT models overfit on the
imagenet-1k (Russakovsky et al., 2015) dataset and thus need to be pretrained on JFT-300 dataset (Sun et al., 2017) in
order to surpass CNNs in performance. Later works (Wu et al., 2021; Guo et al., 2021; Dai et al., 2021) tried to incorporate
CNNs into transformer. This sparked the question, why do Transformer as well as MLPs (Tolstikhin et al., 2021) overfit on
the standard dataset, and what can be done to curtail the issue? The obvious way is pretraining. However, architectural
treatments such as merging with CNN, as well as initialization techniques, also play a significant role to mitigate the issue.
Ultimately, however, the fact that ViT model was trained using the distillation technique without a large dataset(Touvron
et al., 2021) and performed just like CNNs shows that there is still room for improvement on vision transformers without the
need for the larger dataset.

While surveying the representation power of architectures, the following observations were made:

• (Raghu et al., 2021) showed that ViTs have uniform similarity between lower and higher layers while in ResNet, such
similarity doesn’t exist. (Kornblith et al., 2019) also observed the fact that ResNets don’t have uniform representation
across lower and higher layers. (Raghu et al., 2021) ViTs rely highly on the skip connection for their uniform layer
representation and turning these connections off results in a performance drop. This meant that a layer in ViT has a
very high dependency on the information that flows from lower layers.

• (Raghu et al., 2021) showed that ViTs and ResNets learn similar representation in the lower layers, despite being
different architectures. Such phenomenon was also uncovered by (Kornblith et al., 2019) (a) between ResNets that are
trained with CIFAR10 and CIFAR100 and (b) between ResNets that are trained with different weight initialization. This
meant that lower-level representation is general to different architectures and datasets when compared to higher-level
representation.

• (Raghu et al., 2021) also showed that as the level of the layers increases from the lower the higher, ViT’s attention focus
on global features rather than local ones. They showed that ViT-H and ViT-L don’t learn to attend locally when trained
on imagenet-1k, in which case they overfit. For the ViT-B/32, however, lower layers learn to focus on local features.
Combining the above thought with this one, we hypothesize that as the number of layers of the model increase, the
depth forces the attention span to get wider. But, if there is a mechanism by which such depth can be systemically
lowered while still maintaining the original depth physically, models such as ViT-B and ViT-L can learn to attend
locally.

Based on our observation and hypothesis, implementing the following tweaks will lead to lesser overfitting transformers:

• Minimize the dependency of layers on the layer that immediately precedes them. This is different from stochastic depth
(Huang et al., 2016) or BlockDrop (Wu et al., 2018) in that, in this case, layers can choose from which layer to extract
information.

• Systemically minimize the distance between higher and lower while keeping the original depth intact as an option (for
very deep networks such as ViT-L/ViT-H).

B. Base model Hyperparams
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Hyperparam Value
Embedding size 384

MLP Hidden 384
Num of layers 10, 16

batch size 768
dropout 0.2

lr 0.001
label smoothing yes

autoaugment yes
warm-up epoch 5

precision 16 bit
num of head 12
weight-decay 5e-5

Table 2. Base model hyperparamaters

Figure 2. Layer dependency visualization for WSDC model. T1, T2, .., T9 are transformer layers. It should
be read vertically: how much Tx depends on its preceding layers. Ex: T2 depends 89% on layer 1 and 11% on
layer 0. T3 depends 64% on layer 2, 36% on layer 1 and 1% on layer 0.
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Figure 3. Layer weight visualization of WDC model with dropout 0.0. Left is visualization of correctly predicted images.
Right is the weights of wrong prediction

Figure 4. Layer weight visualization of WDC model with dropout 0.2. Left is visualization of correctly predicted images.
Right is the weights of wrong prediction



Dynamic Transformer Networks

Figure 5. Validation accuracy of the proposed models with 10 layers on CIFAR100

Figure 6. Train accuracy of the proposed models with 10 layers on CIFAR100


