
FedHeN: Federated Learning in Heterogeneous Networks

Durmus Alp Emre Acar 1 Venkatesh Saligrama 1

Abstract
We propose a novel training recipe for federated
learning with heterogeneous networks where each
device can have different architectures. We intro-
duce training with a side objective to the devices
of higher complexities to jointly train different ar-
chitectures in a federated setting. We empirically
show that our approach improves the performance
of different architectures and leads to high com-
munication savings compared to the state-of-the-
art methods.

1. Introduction
McMahan et al. (2017a) propose Federated Learning (FL)
as a new distributed optimization problem where a server
gradually trains a global model on datapoints from many
devices. Due to privacy concerns, it is not allowed to transfer
datapoints. Instead, FL transmits local and global models
between devices and the server. Since transmitting models
is a costly operation (Halgamuge et al., 2009), FL aims to
find a global model with as less number of communication
as possible.

Failure of traditional FL in heterogeneous devices. In stan-
dard FL, the server trains one model for all devices. A more
practical problem is to allow devices to have different archi-
tectures based on device resources. For instance, consider
a FL setting with many cellphone users where we want
to distributively train a model on all user data (McMahan
et al., 2017b). Some users might have the latest release of
a cellphone whereas the rest use old versions. The users
with the latest releases would prefer a different, potentially
more complex, model than the user with old cellphones.
Conventional FL as in McMahan et al. (2017a) fails in this
case because devices have different model architectures.

In this work, we investigate the above practical FL problem
where we allow devices to have different architectures based

1Boston University, Boston, MA. Correspondence to: Dur-
mus Alp Emre Acar <alpacar@bu.edu>, Venkatesh Saligrama
<srv@bu.edu>.

DyNN workshop at the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, 2022. Copyright 2022 by
the author(s).

on their capacities. We propose FedHeN that modifies de-
vice training by introducing a novel side objective to the
devices with complex models. The side objective allows
FedHeN to jointly train complex and simple architectures.

We test our method in real-world datasets of CIFAR10 and
CIFAR100 and compare it to a naive baseline and the cur-
rent state-of-the-art method. We show that FedHeN achieves
significant communication savings as well as better perfor-
mance compared to the competitors.

Related Work.

FL. FedAvg (McMahan et al., 2017a) is proposed as an ex-
tension of decentralized SGD (Zinkevich et al., 2010) . The
convergence of FedAvg depends on device data distribution
(Li et al., 2020b). Different modifications are proposed to
improve convergence guarantees such as FedProx (Li et al.,
2020a), SCAFFOLD (Karimireddy et al., 2019), FedDyn
(Acar et al., 2021a). All of these methods average param-
eters of device models in the server. This is not allowed
heterogeneous network setting since the architectures are
not the same. Differently, FedHeN targets FL with hetero-
geneous architectures.

HeteroFL (Diao et al., 2021) introduces FL with hetero-
geneous networks problem. HeteroFL considers a setting
where simple architecture is mapped to a subset of the com-
plex architecture. The server constructs new models by
averaging model weights of all devices based on the map-
ping. Different from HeteroFL, FedHeN introduces novel
side objectives for complex device training.

Early Exit. Due to their size, big DNNs consume more
energy and they are slow to operate. Hubara et al. (2016);
Yang et al. (2019) propose to quantize/binarize the weights
of DNNs to improve memory and computation costs. Boluk-
basi et al. (2017) propose to train a big DNN so that the
network adaptively early exits in ’easy’ examples to de-
crease inference costs. Kaya et al. (2019) propose to add a
side objective on DNN to prevent ’overthinking’ of DNNs
for easy examples. Different from these works, we are in-
terested in FL. FedHeN introduces side objectives to jointly
train models in FL with different architectures.

Our Contributions.

• We present FedHeN to jointly train a server model with

FedHeN: Federated Learning in Heterogeneous Networks

Algorithm 1 FL in Heterogeneous Networks - FedHeN
1: Input: T , E, η, N, {Di}i∈[N], initial models w1

s,w
1
c ,

2: for t = 1 . . . T do
3: Randomly sample active devices, Z ⊂ [N],
4: Divide Z into simple and complex devices, Zs,Zc

5: # Client Optimization
6: for i ∈ Zs do
7: Receive the server simple model, wt

s,
8: wt+1

s,i = ClientTraining (wt
s,Di, E, η)

9: Transmit wt+1
s,i back to the server.

10: end for
11: for j ∈ Zc do
12: Receive the server complex model, wt

c,
13: wt+1

c,j = ClientTrainingSideObj (wt
c,Dj , E, η)

14: Transmit wt+1
c,j back to the server.

15: end for
16: # Server Optimization
17: Set wt+1

s using weights from all active devices,
18: wt+1

s = 1
|Z|

(∑
i∈Zs

wt+1
s,i +

∑
j∈Zc

[
wt+1

c,j

]
M

)
19: Set wt+1

c ’s sub-net as the updated simple model,
20:

[
wt+1

c

]
M = wt+1

s

21: Set rest of the wt+1
c using complex active devices,

22:
[
wt+1

c

]
M′ =

1
|Z|c

∑
j∈Zc

[
wt+1

c,j

]
M′

23: end for

different architectures based on device capacities.
• We empirically show that FedHeN achieves significant

communication savings compared to the baselines.

2. Method
FL setting consists of one server node and N device nodes.
Each device i has a different dataset Di. Let fi :W → R
be the loss of using a model on device i’s dataset. FL solves,

min
w∈W

1

N

∑
i∈[N]

fi (w)

where w is the NN parameters.

Different from the conventional FL, we are interested in
having different architectures in devices. For simplicity,
consider a setting where we have a simple architecture,
ws ∈ Ws, and a complex architecture wc ∈ Wc. Let
S ⊂ [N] and C = [N]− S be the devices that have simple
and complex architectures respectively. We reformulate our
problem as,

min
ws∈Ws
wc∈Wc

1

|S|
∑
i∈S

fi (ws) +
1

|C|
∑
j∈C

fj (wc)

such thatR(ws,wc) = 0 (1)

whereR(ws,wc) captures the relationship between simple
and complex architectures.

Algorithm 2 FedHeN Device Optimizations
1: function ClientTraining (ws,Di, E, η):
2: Start from wi=ws, train E epochs,
3: for E epochs, batch B ⊂ Di do
4: Compute batch gradient, ∇̂fi(wi),
5: Update, wi ← wi − η∇̂fi(wi),
6: Return trained model wi

7: end function
8: function ClientTrainingSideObj (wc,Dj , E, η):
9: Start from wj=wc, train E epochs with side obj.,

10: for E epochs, batch B ⊂ Dj do
11: Compute batch gradient along with side obj.,
12: ∇̂fj(wj), ∇̂fj

(
[wj]M

)
,

13: Update, wj←wj−η
(
∇̂fj(wj)+∇̂fj

(
[wj]M

))
,

14: Return trained model wj

15: end function

We note that Eq. 1 is an ERM objective. If there is no con-
dition (noR(ws,wc) = 0 constraint), one could minimize
the objective by separating complex and simple losses. How-
ever, we are not interested in training data, we would like
to train models that perform well on test data. Hence, we
introduceR(ws,wc) as a way of regularizing the models.

To relate simple and complex architectures, we assume,

Assumption 2.1. Simple architecture is a sub-network of
the complex architecture. There exists a set of indices,M,
of complex architecture such that Ws = {[wc]M |wc ∈
Wc} where [wc]M selects the weights of wc based on the
index setM.

We encourage weight sharing between simple architec-
ture and the corresponding sub-network of the complex
architecture as in Assumption 2.1. We let R(ws,wc) =
∥ws − [wc]M ∥2.

To further regularize models, we add a side objective to the
complex device training. Complex devices minimize their
losses along with the corresponding sub-network of simple
architecture as,

min
ws∈Ws
wc∈Wc

1

|S|
∑
i∈S

fi (ws)+
1

|C|

∑
j∈C

fj (wc)+fj ([wc]M)

such thatR(ws,wc) = 0 (2)

We would like highlight some properties of Eq. 2,

• Simple architecture is trained on all datapoints instead of
on the datapoints only from the simple devices. Hence,
the generalization of simple architecture is improved.

• R(ws,wc) correlates simple and complex architecture.
A better simple model leads to a better complex model
throughR(ws,wc) = 0 condition.

FedHeN: Federated Learning in Heterogeneous Networks

Table 1. IID split, 50 simple and 50 complex devices, 10% partic-
ipation rate. The number of communication rounds required to
achieve the target test performance for different methods. The gain
in using FedHeN compared to best baseline method is given.

Dataset Accuracy FedHeN Decouple NoSide Gain
Simple Model

CIFAR-10 84.4 289 943 805 2.8×
83.4 249 731 669 2.7×

CIFAR-100 46.4 296 864 984 2.9×
45.4 250 588 807 2.4×

Complex Model

CIFAR-10 88.5 649 991 941 1.4×
87.5 456 739 669 1.5×

CIFAR-100 46.8 468 963 614 1.3×
45.8 376 752 472 1.3×

FedHeN Algorithm. FedHeN solves Eq. 2 with the steps
summarized in Algorithm 1.

In each round, a random subset of devices become active,
Z . We divide set Z into simple active and complex active
device sets as Zs and Zc respectively.

Simple active devices receive the server simple model, wt
s.

We compute a local model wt+1
s,i by starting from wt

s and
training it for E epochs on local dataset Di displayed as
’ClientTraining’ method (Alg. 2). The trained model is
transmitted back to the server.

Complex active devices receive the server complex model,
wt

c. We train a local model starting from wt
c and training

it for E epochs using their local dataset, Dj with gradients
of the complex and the simple model shown as ’Client-
TrainingSideObj’ method (Alg. 2). Namely, we update
the model with summation of batch gradient of complex
model, ∇̂fj(wj), and batch gradient of the corresponding
sub-network (simple) model, ∇̂fj

(
[wj]M

)
. The trained

model is transmitted back to the server.

The server collects models from participating devices. The
server simple model is constructed by averaging weights
from all active devices, .i.e the simple devices {wt+1

s,i }i∈Zs

as well as the common sub-net of the complex devices{[
wt+1

c,j

]
M

}
j∈Zc

, ln. 18 in Alg. 1. The common sub-

network of the server complex model is set equal to the
constructed server simple model, ln. 20 in Alg. 1. Finally,
the rest of the server complex model is constructed by av-
eraging the corresponding weights of the active complex
models, .i.e

{[
wt+1

c,j

]
M′

}
j∈Zc

whereM′ corresponds to

the sub-network that is not common with the simple archi-
tecture, ln. 22 in Alg. 1.

This completes one round of training of FedHeN. We iterate
the same process for T communication rounds.

Cost of side objective. In passing, we note that side ob-
jective adds minimal cost to the complex devices. Firstly,

Table 2. Non-IID split, 50 simple and 50 complex devices, 10%
participation rate. The number of communication rounds required
to achieve the target test performance for different methods. The
gain in using FedHeN compared to best baseline method is given.

Dataset Accuracy FedHeN Decouple NoSide Gain
Simple Model

CIFAR-10 79.4 295 986 810 2.7×
78.4 256 816 676 2.6×

CIFAR-100 43.8 278 978 914 3.3×
42.8 239 813 762 3.2×

Complex Model

CIFAR-10 84.2 596 1000 857 1.4×
83.2 519 887 751 1.4×

CIFAR-100 44.8 450 997 498 1.1×
43.8 372 754 456 1.2×

it is a light weight operation. Complex devices calculate
gradients of the full model, wc. Calculating the gradient
with respect to the simple model, ws, requires less computa-
tion. Secondly, the main energy consumption occurs during
transmission of models (Halgamuge et al., 2009).

3. Experiments
In this section, we compare FedHeN method to baselines in
real-world dataset settings. We refer to Appendix A for a
description of the hyperparameters.

FL dataset. We test our method using CIFAR-10 and
CIFAR-10 (Krizhevsky et al., 2009). We split the datasets
into 100 clients and randomly activate 10 clients in each
round. We consider both IID and non-IID splits in our
experiments. IID split is constructed by randomly partition-
ing data into clients. Non-IID split is constructed using a
Dirichlet prior on the labels as in Yurochkin et al. (2019).

We assume the first 50 devices have simple architecture
and the last 50 devices have complex architecture in all
experiments.

Models. We use PreActResNet181 (He et al., 2016) for
the complex architecture. PreActResNet18 has 4 residual
blocks and total of 11.1M parameters.

If we centralize all client datapoints, the complex archi-
tecture gets 93% and 73.5% performance for CIFAR-10
and CIFAR-100 datasets respectively. If we centralize half
of the datapoints as in 50 devices, the complex architec-
ture gets 90.5% and 62.6% performance for CIFAR-10 and
CIFAR-100 datasets respectively.

As a simple architecture, we consider the first 2 residual
blocks of PreActResNet18. Then, we add a mix pooling
layer (Lee et al., 2016) that learns a weighted combination of
avg pooling and max pooling layers as in Kaya et al. (2019).

1BatchNorm layers store data statistics which results in privacy
leakage. We use GroupNorm layers (Wu & He, 2018) instead in
all ResNet models.

FedHeN: Federated Learning in Heterogeneous Networks

Figure 1. Test accuracy vs. communication rounds on CIFAR-10 IID split. Left: Simple, Right: Complex.

The simple architecture has overall 0.7M parameters.

If we centralize all client datapoints, the simple architec-
ture gets 86% and 63.2% performance for CIFAR-10 and
CIFAR-100 datasets respectively. If we centralize half of the
datapoints as in 50 devices, simple model gets 84.5%, 55.7%
performance for CIFAR-10 and CIFAR-100 respectively.

Methods. We compare FedHeN to two baselines as,

• Naive Decouple. Decouple minimizes Eq. 1 without any
R(ws,wc) = 0 constraint. It decouples complex and
simple device training. It separately trains a complex and
a simple model using FedAvg. Decouple is summarized
in Algorithm 3.

• NoSide2 (Diao et al., 2021). NoSide is motivated from
HeteroFL (Diao et al., 2021). It minimizes Eq. 1 with the
sameR(ws,wc) as FedHeN. The key difference is that
it does not use side objective in the complex architecture
training. NoSide is summarized in Algorithm 4.

Evaluation Metric. We fix a target test accuracy for server
simple and server complex models. We compare the number
of communications rounds to achieve the target test accuracy
for all methods.

Results. Table 1 & 2 show the number of communication
rounds to get target accuracies in all methods. We highlight
the gain of using FedHeN compared to the best competi-
tor in the last column. We present convergence curves vs.
communication rounds in Figure 1, 2 & 3 (Appendix A).

FedHeN leads to significant communication savings. We
observe that FedHeN trains better models uniformly in all
the experiments shown in the gain columns of Table 1 &
2. For instance, the same simple performance of 43.8% is
obtained using 3.3× less communication with FedHeN in

2HeteroFL is proposed in a setting where simple model is ob-
tained by shrinking CNN channels of the complex model different
from our setting. Except from the simple model definition, Het-
eroFL uses the same R(ws,wc) as FedHeN and it does not add
side objective. We name HeteroFL in our setting as NoSide.

CIFAR-100 non-IID setting. The communication savings
ranges from 1.1× to 3.3× in our experiments.

Decouple vs NoSide. Decouple is a naive algorithm. How-
ever, it performs close to NoSide algorithm in CIFAR-10 IID
and non-IID settings as shown in Figure 1 & 2. For instance,
the same test accuracy for complex model is achieved in
991 and 941 rounds for Decouple and NoSide models in
CIFAR-10 IID setting as shown in Table 1.

Simple model in FedHeN achieves similar to centralized
accuracy. FedHeN achieves better simple performance be-
cause simple architecture is trained on all datapoints due to
the side objective in complex devices. Moreover, weight
sharing between complex and simple architecture improves
simple model’s generalization. For instance, FedHeN’s sim-
ple model in CIFAR-10 achieves 88.6% test accuracy in IID
split within 1000 communication rounds as shown in Figure
1 which is higher than the centralized accuracy of simple
model. Differently, NoSide and Decouple gets worse sim-
ple performance compared to FedHeN and the centralized
model as shown in Figure 1, 2 & 3.

Complex model in FedHeN achieves better performance
compared to competitors. Training with side objective im-
proves complex model performance in FedHeN. For in-
stance, in CIFAR-10 IID setting, FedHeN’s complex model
achieves 89.6% test performance within 1000 communica-
tion rounds which is >1% better compared to the competi-
tors. This is also reflected in the gain values. FedHeN leads
to 1.5× communication savings for complex model.

4. Conclusion
We consider FL with heterogeneous networks where devices
use different architectures based on their capacities. Our
method, FedHeN, modifies device objectives of the complex
device models to jointly train with different architectures.
FedHeN leads to high communication savings compared to
the baseline methods.

FedHeN: Federated Learning in Heterogeneous Networks

Acknowledgements
This research was supported by the Army Research Office
Grant W911NF2110246, the National Science Foundation
grants CCF-2007350 and CCF-1955981, and the Hariri Data
Science Faculty Fellowship Grants, and a gift from the ARM
corporation.

References
Acar, D. A. E., Zhao, Y., Matas, R., Mattina, M., What-

mough, P., and Saligrama, V. Federated learning based
on dynamic regularization. In International Conference
on Learning Representations, 2021a. URL https:
//openreview.net/forum?id=B7v4QMR6Z9w.

Acar, D. A. E., Zhao, Y., Zhu, R., Matas, R., Mattina, M.,
Whatmough, P., and Saligrama, V. Debiasing model
updates for improving personalized federated training.
In International Conference on Machine Learning, pp.
21–31. PMLR, 2021b.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V. Adap-
tive neural networks for efficient inference. In Interna-
tional Conference on Machine Learning, pp. 527–536.
PMLR, 2017.

Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Feder-
ated meta-learning with fast convergence and efficient
communication. arXiv preprint arXiv:1802.07876, 2018.

Diao, E., Ding, J., and Tarokh, V. Hetero{fl}: Com-
putation and communication efficient federated learn-
ing for heterogeneous clients. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=TNkPBBYFkXg.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized
federated learning: A meta-learning approach. arXiv
preprint arXiv:2002.07948, 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks.
In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 1126–1135, International
Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.
press/v70/finn17a.html.

Halgamuge, M. N., Zukerman, M., Ramamohanarao, K.,
and Vu, H. L. An estimation of sensor energy consump-
tion. Progress in Electromagnetics Research, 12:259–295,
2009.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv,
R., and Bengio, Y. Binarized neural networks. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/
d8330f857a17c53d217014ee776bfd50-Paper.
pdf.

Jee Cho, Y., Wang, J., and Joshi, G. Towards understanding
biased client selection in federated learning. In Camps-
Valls, G., Ruiz, F. J. R., and Valera, I. (eds.), Proceedings
of The 25th International Conference on Artificial Intelli-
gence and Statistics, volume 151 of Proceedings of Ma-
chine Learning Research, pp. 10351–10375. PMLR, 28–
30 Mar 2022. URL https://proceedings.mlr.
press/v151/jee-cho22a.html.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich,
S. U., and Suresh, A. T. SCAFFOLD: stochastic con-
trolled averaging for on-device federated learning. CoRR,
abs/1910.06378, 2019. URL http://arxiv.org/
abs/1910.06378.

Kaya, Y., Hong, S., and Dumitras, T. Shallow-deep net-
works: Understanding and mitigating network overthink-
ing. In International conference on machine learning, pp.
3301–3310. PMLR, 2019.

Krizhevsky, A. et al. Learning multiple layers of features
from tiny images. Technical report, 2009.

Lee, C.-Y., Gallagher, P. W., and Tu, Z. Generalizing pool-
ing functions in convolutional neural networks: Mixed,
gated, and tree. In Artificial intelligence and statistics,
pp. 464–472. PMLR, 2016.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar,
A., and Smith, V. Federated optimization in heteroge-
neous networks. In Proceedings of Machine Learning
and Systems 2020, pp. 429–450, 2020a.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z.
On the convergence of fedavg on non-iid data. In In-
ternational Conference on Learning Representations,
2020b. URL https://openreview.net/forum?
id=HJxNAnVtDS.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017a.

https://openreview.net/forum?id=B7v4QMR6Z9w
https://openreview.net/forum?id=B7v4QMR6Z9w
https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=TNkPBBYFkXg
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.mlr.press/v151/jee-cho22a.html
https://proceedings.mlr.press/v151/jee-cho22a.html
http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1910.06378
https://openreview.net/forum?id=HJxNAnVtDS
https://openreview.net/forum?id=HJxNAnVtDS

FedHeN: Federated Learning in Heterogeneous Networks

McMahan, B., Ramage, D., and Scientists, R. Fed-
erated learning: Collaborative machine learning
without centralized training data, Apr 2017b. URL
https://ai.googleblog.com/2017/04/
federated-learning-collaborative.
html.

Nishio, T. and Yonetani, R. Client selection for federated
learning with heterogeneous resources in mobile edge.
In ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), pp. 1–7, 2019. doi: 10.1109/ICC.
2019.8761315.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media, 2012.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.
3–19, 2018.

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B.,
Huang, J., and Hua, X.-s. Quantization networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
Hoang, N., and Khazaeni, Y. Bayesian nonparametric
federated learning of neural networks. In International
Conference on Machine Learning, pp. 7252–7261, 2019.

Zhang, S. Q., Lin, J., and Zhang, Q. A multi-agent rein-
forcement learning approach for efficient client selection
in federated learning, 2022. URL https://arxiv.
org/abs/2201.02932.

Zinkevich, M., Weimer, M., Smola, A. J., and Li, L.
Parallelized stochastic gradient descent. In Lafferty,
J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S.,
and Culotta, A. (eds.), Advances in Neural Information
Processing Systems 23: 24th Annual Conference on
Neural Information Processing Systems 2010. Proceed-
ings of a meeting held 6-9 December 2010, Vancouver,
British Columbia, Canada, pp. 2595–2603. Curran As-
sociates, Inc., 2010. URL https://proceedings.
neurips.cc/paper/2010/hash/
abea47ba24142ed16b7d8fbf2c740e0d-Abstract.
html.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/2201.02932
https://arxiv.org/abs/2201.02932
https://proceedings.neurips.cc/paper/2010/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html

FedHeN: Federated Learning in Heterogeneous Networks

A. Appendix

Algorithm 3 Algorithm Decouple
1: Input: T , E, η, initial models w1

s,w
1
c ,

2: for t = 1 . . . T do
3: Randomly sample active devices, Z ⊂ [N],
4: Divide Z into simple and complex devices, Zs,Zc

5: # Client Optimization
6: for i ∈ Zs do
7: Receive the server simple model, wt

s,
8: wt+1

s,i = ClientTraining (wt
s,Di, E, η)

9: Transmit wt+1
s,i back to the server.

10: end for
11: for j ∈ Zc do
12: Receive the server complex model, wt

c,
13: wt+1

c,j = ClientTraining (wt
c,Dj , E, η)

14: Transmit wt+1
c,j back to the server.

15: end for
16: # Server Optimization
17: Set wt+1

s using weights from simple active devices,
18: wt+1

s = 1
|Zs|

∑
i∈Zs

wt+1
s,i

19: Set wt+1
c using weights from complex active devices,

20: wt+1
c = 1

|Zc|
∑

i∈Zc
wt+1

c,i

21: end for

Algorithm 4 Algorithm NoSide
1: Input: T , E, η, initial models w1

s,w
1
c ,

2: for t = 1 . . . T do
3: Randomly sample active devices, Z ⊂ [N],
4: Divide Z into simple and complex devices, Zs,Zc

5: # Client Optimization
6: for i ∈ Zs do
7: Receive the server simple model, wt

s,
8: wt+1

s,i = ClientTraining (wt
s,Di, E, η)

9: Transmit wt+1
s,i back to the server.

10: end for
11: for j ∈ Zc do
12: Receive the server complex model, wt

c,
13: wt+1

c,j = ClientTraining (wt
c,Dj , E, η)

14: Transmit wt+1
c,j back to the server.

15: end for
16: # Server Optimization
17: Set wt+1

s using weights from all active devices,
18: wt+1

s = 1
|Z|

(∑
i∈Zs

wt+1
s,i +

∑
j∈Zc

[
wt+1

c,j

]
M

)
19: Set wt+1

c ’s sub-net as the updated simple model,
20:

[
wt+1

c

]
M = wt+1

s

21: Set rest of the wt+1
c using complex active devices,

22:
[
wt+1

c

]
M′ =

1
|Z|c

∑
j∈Zc

[
wt+1

c,j

]
M′

23: end for

Decouple Algorithm. We present Decouple methods in Algorithm 3. Decouple fully decouples simple and complex
architecture training. We explain the method in detail below.

In each round, a random subset of devices become active, Z . Z is then divided into simple active and complex active
device sets as Zs and Zc respectively. Simple active devices receive the server simple model. A local model is trained using
’ClientTraining’ method (Alg. 2). The trained model is transmitted back to the server. Complex active devices follow a
similar process where they receive the server complex model. Then, a local model is trained using ’ClientTraining’ method.
The trained model is transmitted back to the server.

The server simple model is constructed by averaging weights from all active simple devices, {wt+1
s,i }i∈Zs

. The server
complex model is constructed using the all active complex devices,

{
wt+1

c,j

}
j∈Zc

.

NoSide Algorithm. NoSide method is presented in Algorithm 4. We explain the method in detail below.

In each round, a random subset of devices become active, Z . We divide set Z into simple active and complex active device
sets as Zs and Zc respectively. Simple and complex device training is the same as in Decouple method where each active
device receive the current server model based on their capacity, then train a local model using ’ClientTraining’ method and
transmit the trained model back to the server.

The server step is the same as in FedHeN method. The server simple model is constructed by averaging weights from
all active devices, .i.e the simple devices {wt+1

s,i }i∈Zs
as well as the common sub-net of the complex active devices{[

wt+1
c,j

]
M

}
j∈Zc

. The common sub-architecture of the server complex model is set equal to the constructed server simple

model. The rest of the server complex model is constructed by averaging the corresponding weights of the active complex
models, .i.e

{[
wt+1

c,j

]
M′

}
j∈Zc

.

Related Works. We mention more dimensions of related work in this subsection.

FedHeN: Federated Learning in Heterogeneous Networks

(a) (b)

Figure 2. Test accuracy vs. communication rounds on CIFAR-10 non-IID split. 2(a): Simple, 2(b): Complex.

Personalized federated learning. Personalized federated learning (Chen et al., 2018) extends meta learning (Thrun & Pratt,
2012) into FL. The server trains a meta model and the devices customize the meta model using the local dataset. Fallah
et al. (2020) propose to use FedAvg and MAML (Finn et al., 2017) meta adaptation. Acar et al. (2021b) use debiasing
algorithms to improve convergence of FedAvg. Differently, FedHeN trains different complexity models for devices based
on the capacities. This can be thought as customizing the device models based on the device resources. FedHeN can be
improved with personalized federated learning methods.

Client selection. There are works that target to reduce communication costs through client selection (Zhang et al., 2022;
Nishio & Yonetani, 2019; Jee Cho et al., 2022). A smart client selection further decreases the number of iterations and the
communication costs compared to random activation. Different from client selection, FedHeN allows simple devices to
participate federated learning which have lower communication footprint that complex device models. FedHeN can be
adapted in to client selection algorithms.

Hyperparameters. We train each method for 1000 communication rounds. Each active device trains models for E = 5
epochs with learning rate as η = 0.1. We use SGD optimizer during training and clip gradients (at norm 10) to improve
stability. If a device model fails in training, .i.e gets NaN weights, we ignore that device in server model construction only
for that round. The methods are implemented using PyTorch library (Paszke et al., 2019).

Figures and Algorithms. Decouple and NoSide are summarized in Algorithm 3 and 4 respectively. The convergence curves
of FedHeN, Decouple and NoSide are presented in Figure 1, 2 and 3.

Reporting Results. Methods average only active devices to set server models. This introduces noise in convergence curves
and communication gain calculations. We report/present model performances when we average all devices (all complex
devices for server complex model and all simple devices for server simple model). We note that this is just for the reporting
purposes and the training is performed as stated in Algorithm 1, 3 & 4.

FedHeN: Federated Learning in Heterogeneous Networks

(a) (b)

(c) (d)

Figure 3. Test accuracy vs. communication rounds on CIFAR-10. 3(a) & 3(b): IID split simple and complex. 3(c) & 3(d): non-IID split
simple and complex.

