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Abstract

Understanding which inductive biases could
be helpful for the unsupervised learning of
object-centric representations of natural scenes
is challenging. In this paper, we systematically
investigate the performance of two models on
datasets where neural style transfer was used to
obtain objects with complex textures while still
retaining ground-truth annotations. We find that
by using a single module to reconstruct both the
shape and visual appearance of each object, the
model learns more useful representations and
achieves better object separation. In addition,
we observe that adjusting the latent space size
is insufficient to improve segmentation perfor-
mance. Finally, the downstream usefulness of
the representations is significantly more strongly
correlated with segmentation quality than with
reconstruction accuracy.

1. Introduction
A core motivation for object-centric learning is that humans
interpret complex environments such as natural scenes as
the composition of distinct interacting objects. Evidence for
this claim can be found in cognitive psychology and neuro-
science (Spelke, 1990; Téglás et al., 2011; Wagemans, 2015;
Dehaene, 2020). Current object-centric learning approaches
try to merge the advantages of connectionist and symbolic
methods by representing each object with a distinct vec-
tor (Greff et al., 2020). The problem of object separation
becomes central for unsupervised methods that can only
use the data itself to lean how to isolate objects. Several
methods have been proposed to provide inductive biases to
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Figure 1: Left: samples from the original datasets. Right: samples
from the same datasets with neural style transfer.

achieve this objective (e.g., Burgess et al., 2019; Engelcke
et al., 2020b; Locatello et al., 2020; Engelcke et al., 2020a;
Kipf et al., 2021). However, they are typically tested on
simple datasets where objects show little variability in their
texture, often being monochromatic. This characteristic may
allow models to successfully separate objects by relying on
low-level characteristics, such as color (Greff et al., 2019),
over more desirable high-level ones, such as shape.

Research in the direction of natural objects is still scarce
(Karazija et al., 2021; Engelcke et al., 2021; Kipf et al.,
2021), as such datasets often do not provide exhaustive
knowledge of the factors of variation, which are very rich in
natural scenes. In this context, unsupervised methods strug-
gle to learn object-centric representations, and the reason
for this remains unexplained (Greff et al., 2019, Section 5).

In this paper, we conduct a systematic experimental study
on the inductive biases necessary to learn object-centric
representations when objects have complex textures. To
obtain significant and interpretable results, we focus on
static images and use neural style transfer (Gatys et al.,
2016) to apply complex textures to the objects of the Multi-
dSprites (Kabra et al., 2019) and CLEVR (Johnson et al.,
2017) datasets, as shown in Fig. 1. This makes the task
significantly more challenging while still preserving all the
advantages of a procedurally generated dataset, and avoiding
the above-mentioned pitfalls of natural datasets.

We investigate MONet (Burgess et al., 2019) and Slot
Attention (Locatello et al., 2020), two popular slot-based
autoencoder models that learn to represent objects
separately and in a common format. The latter obtains
object representations by applying Slot Attention to a
convolutional embedding of the input, and then decodes
each representation into shape and visual appearance via
a single component. In contrast, MONet reconstructs them
with two components: a recurrent attention network that
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segments the input, and a variational autoencoder (VAE)
(Kingma & Welling, 2014; Rezende et al., 2014) that
separately learns a representation for each object by learning
to reconstruct its shape and visual appearance. Unlike in
Slot Attention, the shape reconstructed by the VAE is not
used to reconstruct the final image; instead the shape from
the recurrent attention network is used. To still have shape
information in the latent representation of the VAE, the
training loss includes a KL divergence between the mask
predicted by the VAE and the one predicted by the attention
network. Therefore shape and visual appearance are, in
effect, separate unless the KL divergence provides a strong
enough signal. For this study, we posit two desiderata for
object-centric models, adapted from Dittadi et al. (2021b):

Desideratum 1. Object separation and reconstruction. The
models should have the ability to accurately separate and
reconstruct the objects in the input, even those with complex
textures. For the models considered here, this means that
they should correctly segment the objects and reproduce
their properties in the reconstruction, including their texture.

Desideratum 2. Object representation. The models should
capture and represent the fundamental properties of each
object present in the input. When ground-truth properties
are available for the objects, this can be evaluated via a
downstream prediction task.

We summarize our main findings on the two models ana-
lyzed as follows: (1) Models that better balance the impor-
tance of both shape and visual appearance of the objects
seem to be less prone to what we call hyper-segmentation
(see Section 3). We show how this can be achieved with an
architecture that uses a single module to obtain both shape
and visual appearance of each object. When this is not the
case, it becomes significantly more challenging for a model
to correctly separate objects and learn useful representations.
(2) Hyper-segmentation of the input leads to the inability of
the model to obtain useful representations. Separation is a
strong indicator of representation quality. (3) The represen-
tation bottleneck is not sufficient to regulate a model’s ability
to segment the input. Tuning other hyperparameters such as
encoder and decoder capacity appears to be necessary.

2. Methods
Datasets and models. Similarly to Dittadi et al. (2021b),
we use neural style transfer (Gatys et al., 2016) to
increase the complexity of the texture of the objects in the
Multi-dSprites and CLEVR datasets (see Appendix B for
details). This allows for textures that have high variability
but are still correlated with the shape of the object, as
opposed to preset patterns as done in Greff et al. (2019) and
Karazija et al. (2021) or completely random ones. We apply
neural style transfer to the entire image and then select the

objects using the ground-truth segmentation masks (see
Fig. 1). Keeping the background simple allows for a more
straightforward interpretation of the models’ performance.
As object-centric models, we consider MONet (Burgess
et al., 2019) and Slot Attention (Locatello et al., 2020),
chosen because they implement very distinct mechanisms
to solve the the problem of separation (see Section 1).

Evaluation. Following the two desiderata in Section 1,
we separately focus on the separation, reconstruction, and
representation performance of the models. Separation is
measured by the Adjusted Rand Index (ARI) (Hubert &
Arabi, 1985), which quantifies the similarity between two
partitions of a set. Reconstruction is measured using the
Mean Squared Error (MSE) between input and reconstructed
images. Representation is measured by the performance of
a simple downstream model trained to predict the properties
of each object using only the object representations as inputs.
Following previous literature (Locatello et al., 2020; Dittadi
et al., 2021b), we match ground-truth objects with object
representations such that the overall loss is minimized.

Performance studies. The baseline performance of the
models on the style transfer datasets is established using the
hyperparameters from the literature. We then vary parame-
ters and architectures to improve performance. In MONet,
we reduce the number of skip-connections of the U-Net in
the attention module, we change the latent space size, the
number of channels in the encoder and decoder of the VAE,
and the β and σ parameters in the training objective. In Slot
Attention, we increase the number of layers and channels
in both encoder and decoder and increase the size of the
latent space. For both models, we investigate how the latent
space size alone affects performance. We use multiple ran-
dom seeds to account for variability in performance when
feasible (see Appendix E for further details).

3. Experiments
Architectural biases. Qualitatively, the MONet base-
line (Fig. 2a) segments primarily according to color, re-
sulting in each slot encoding fragments of multiple objects
that share the same color. We call this behavior hyper-
segmentation. On the other hand, the Slot Attention baseline
(Fig. 2c) produces blurred reconstructions and avoids hyper-
segmentation. Here, some objects are still split across more
than one slot but, unlike in MONet, we do not observe mul-
tiple objects that are far apart in the scene being (partially)
modeled by the same slot. We observe this quantitatively in
Fig. 3 (top): compared to the Slot Attention baseline, the
MONet baseline has a significantly worse ARI score but
a considerably better MSE. Fig. 12 in Appendix G shows
similar results on CLEVR.

These observations can guide our search for better model
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(a) MONet, baseline.

(b) MONet, best model.

(c) Slot Attention, baseline.

(d) Slot Attention, best model.

Figure 2: Qualitative results on Multi-dSprites (validation set).
From left to right in each subfigure: original input, final reconstruc-
tion, and product of the reconstruction and mask for each of the
six slots. MONet still fails to separate objects correctly although
it blurs the reconstructions. See Fig. 12 for results on CLEVR.

parameters. Slot Attention is blurring away the small details
of the texture and focuses on the shape to separate them.
MONet, instead, achieves good reconstructions but does
so by using the attention module to select pixels that share
the same color, as opposed to entire objects, while the VAE
simply reconstructs plain colors (see Appendix G for more
details). Therefore, for MONet we attempt to sacrifice some
reconstruction quality in exchange for better object separa-
tion. For Slot Attention, we investigate whether improving
the reconstructions negatively affects object separation. We
refer to Appendix E for further details and results on the
hyperparameter search for MONet and Slot Attention.

We now discuss the results obtained using the combina-
tion of hyperparameters that achieves the best performance,
called best model. In Fig. 2b, we see that MONet still hyper-
segments even though the reconstructions are now blurred.
For Slot Attention (Fig. 2d), we observe that the quality
of reconstructions has improved, and it more often repre-
sents an entire object in a single slot. Although the ARI for

Figure 3: Median performance of the different seeds trained for
each of the indicated models (error bars denote 95% confidence
intervals). Top: ARI (↑) and MSE (↓) for each dataset and model.
Bottom: performance of the downstream model on each feature of
the objects. Accuracy is used for categorical features and R2 for
numerical features. A random guess baseline is shown in purple.

MONet has also improved, the separation problem is still
far from solved, while Slot Attention shows a significant
improvement both in terms of ARI and MSE (see two upper-
most plots in Fig. 3). Note how, for Slot Attention, the ARI
is significantly lower in Multi-dSprites, when compared to
CLEVR. The likely reason is that, when a significant por-
tion of an object is occluded by another, the visible shape is
being altered significantly and the edges of objects are not
clear. Therefore, two explanations of the same scene can
still be reasonable while not corresponding to the ground
truth. This extreme overlap never occurs in CLEVR.

Overall, even when MONet sacrifices reconstruction quality
and blurs away the details, hyper-segmentation is still
present as evidenced by our qualitative and quantitative
analyses. This suggests that the separation problem in
MONet may not simply be caused by the training objective,
but rather by its architectural biases. Indeed, improving the
reconstruction performance of Slot Attention has, instead,
yielded both better separation and more detailed recon-
structions, suggesting that generating shape and appearance
using a single module is a more favorable inductive bias for
learning representations of objects with complex textures.

Representation performance. To understand the interplay
between separation and learned representations, we explore
the performance on a downstream property prediction task
that was trained using the object representations as inputs
(see Appendix C.1 for details). From Fig. 3, we observe
how MONet fails to capture some of the properties in the
representations and consistently performs worse than Slot
Attention, for both the baseline and the improved versions.
This suggests that, as highlighted in Dittadi et al. (2021b),
a model that is not capable of correctly separating objects
will also fail to accurately represent them. The trend is also
clear from Fig. 4, which shows that a higher ARI score



Inductive Biases for Object-Centric Representations in the Presence of Complex Textures

Figure 4: Rank correlation of the ARI and MSE scores with down-
stream property prediction performance. Correlations are com-
puted over all the models trained with that dataset in our study.

strongly correlates with an increased performance of the
downstream model on all object properties. The correlation
with MSE is much weaker, which highlights how strong
visual reconstruction performance is not the ultimate
indicator for good object representations. This result does
not contradict previous findings (Dittadi et al., 2021b) as
here the properties we expect the downstream model to
predict have little to do with the texture of the object and,
therefore, the model can have poorer reconstructions while
still obtaining useful representations.

Representation bottleneck. Here, we investigate how the
size of the representation bottleneck (see Appendix A) af-
fects performance. In Fig. 7, we observe that the MSE
improves slightly and quickly plateaus for both MONet
and Slot Attention when the latent space size increases.
However, the ARI does not significantly change even with
increased latent size. The increase in latent space size ar-
guably increases the model’s capacity, but it does not prove
to be enough to improve the separation and reconstruction
performance significantly.

4. Related work
Learning representations that reflect the underlying struc-
ture of data is believed to be useful for downstream learning
and systematic generalization (Bengio et al., 2013; Lake
et al., 2017; Greff et al., 2020). While many recent empiri-
cal studies have investigated the usefulness of disentangled
representations and the inductive biases involved in learning
them (Locatello et al., 2019; Van Steenkiste et al., 2019;
Träuble et al., 2021; Montero et al., 2021; Dittadi et al.,
2021c; 2022), analogous experimental studies in the context
of object-centric representations are scarce. The study by
Engelcke et al. (2020a) presents an investigation into in-
ductive biases for object separation, focusing on one model
and traditional synthetic datasets. In this work, we study
hyper-segmentation on datasets where objects have complex
textures. Karazija et al. (2021) recently proposed ClevrTex,
a dataset that introduces challenging textures to scenes from
CLEVR (Johnson et al., 2017). The experiments reported
show that, without any tuning, some models fail to segment
complex scenes by focusing on colors. The authors, simi-
larly to what we highlighted in this work, state that “ignoring
confounding aspects of the scene rather than representing
them might aid in the overall task [of segmentation].” In

our work, we investigate the mechanism behind the ability
of some models to ignore superfluous details and more suc-
cessfully segment the image, proposing a useful inductive
bias to achieve better object representations.

Recently, works that propose new object-centric learning
methods also include evaluations on more complex datasets.
Greff et al. (2019) train IODINE on Textured MNIST and
ImageNet, and observe that the model separates the im-
age primarily according to color when the input is com-
plex. GENESIS-V2 (Engelcke et al., 2021) was trained
on Sketchy and APC, two real-world robot manipulation
datasets. However, the authors do not explore the mecha-
nism behind the performance of the models they tested, and
do not attempt to optimize the architectures. In the video
domain, Kipf et al. (2021) include evaluations on a dataset
with complex textures, training their model to predict optical
flow rather than a reconstruction of the input.

5. Conclusions
In this paper, we have investigated which inductive biases
may be most useful for slot-based unsupervised models to
obtain good object-centric representations of scenes where
objects have complex textures. We found that using a single
module to reconstruct both shape and visual appearance
of objects naturally balances the importance of these two
aspects in the generation process, thereby avoiding hyper-
segmentation and achieving a better compromise between
precise texture reconstructions and correct object segmenta-
tion. Therefore, our recommendation is that models should
have separation as an integral part of the representation
process. Additionally, we showed that separation strongly
correlates with the quality of the representations, while re-
construction accuracy does not: this justifies sacrificing
some reconstruction quality. Finally, we observed that the
representation bottleneck is not a sufficient inductive bias,
as increasing the latent space size can be counterproductive
unless the model is already separating the input correctly.

Although the models considered in our study have been
shown to be among the most successful ones on this type
of data, it would be interesting to explore if the same con-
clusions hold for other models. Another interesting avenue
for future work is to extend our study to more complex
downstream tasks involving abstract reasoning, e.g., in a
neuro-symbolic system, where symbol manipulation can be
performed either within a connectionist framework (Evans
& Grefenstette, 2018; Smolensky, 1990; Battaglia et al.,
2018) or by purely symbolic methods (Asai & Fukunaga,
2018; Mao et al., 2019; Dittadi et al., 2021a). Finally, it
would be relevant to validate our conclusions on additional
datasets, and to introduce objects with varying texture com-
plexity, as this could require different model capacities to
achieve separation (Engelcke et al., 2020a).
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A. Remarks on notation
The term representation bottleneck should not be confused with the reconstruction bottleneck introduced by Engelcke et al.
(2020a). The representation bottleneck refers to the small size of the latent space, while the reconstruction bottleneck refers
to how easy it is for the model to reconstruct the data. In Engelcke et al. (2020a), the reconstruction bottleneck is posited to
be the reason behind the models’ inability to separate objects into different slots.

Often, in the paper, we refer to object-centric representations and slots as synonyms, although this is only true for slot-based
models.

The term hyper-segmentation refers to when a model splits the input into different slots with little to no regard to high-level
characteristics of the input, such as the shapes of objects, and instead just uses low-level characteristics, primarily color.
This often results in slots that consist of small clusters of pixels with similar color, which means that several objects can be
partially represented in the same slot and at the same time each object may be partially represented in multiple slots. This
phenomenon is distinct from over-segmentation (Engelcke et al., 2020b), where multiple slots may reconstruct a single
object but no slot reconstructs (parts of) multiple objects. Examples are shown in the main text of the paper (see Fig. 2b and
Fig. 2b), where MONet is hyper-segmenting the input, while Slot Attention is sometimes over-segmenting it.

B. Datasets
The original versions of both datasets are taken from Kabra et al. (2019).

CLEVR. The CLEVR dataset consists of 3D objects placed on a gray background at different distances from the camera.
Overlap between objects is kept to a minimum. There are spheres, cylinders, and cubes of eight different colors. The
objects can be metallic of opaque. There is a big and small variant of each object and they can be placed in several different
orientations. We use the variant of the dataset that has no more than 6 objects in it, as was done in previous object-centric
learning research. The total number of samples in the training dataset is 49483, and we leave 2000 samples for validation
and 2000 samples for testing.

Multi-dSprites. The Multi-dSprites dataset places several 2D objects on a grayscale background. The objects can be a
square, an ellipse, or a heart. They can have any RGB color, orientation, and different levels of overlap. Here, we use 90000
samples for the training, 5000 for validation, and 5000 for testing.

Neural Style Transfer. Neural Style Transfer was applied in its most basic form (Jacq, 2021) except for a few additions
to make running it on several datasets easier. We opted to use The Starry Night by Dutch painter Vincent Van Gogh as a
reference style image (we used the photo from Wikimedia Commons, which is in the public domain). We experimented
with several parameters, and we noticed a lot of variability between runs and a more pleasant result from the most basic
implementation of the algorithm.

The final version of the datasets was obtained by first applying neural style transfer to each image (optimization happens on
an image-to-image basis). This results in the entire scene having the style of the reference image. After obtaining the neural
style transfer version of the image, we applied the original segmentation masks of the objects to obtain an image where only
the foreground objects have a complex texture, while the background remains the original one.
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(a) Samples from original Multi-dSprites. (b) Samples from style transfer Multi-dSprites.

(c) Samples from original CLEVR. (d) Samples from style transfer CLEVR.

Figure 5: Samples from the original and neural style transfer datasets.
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C. Evaluation
C.1. Downstream feature prediction task

The setup for the feature prediction task is the same as the one used in Dittadi et al. (2021b). The models used are a simple
linear model and an MLP with one hidden layer having 256 neurons and enough outputs to predict all of the features of an
object. The input to the model is the object representation of a single object and the output is the predicted features for
that object. Let r be the representation of an object, M the model, ŷ = M(r) is the output of the model, and y is the target
vector such that yik:ik+1

is the kth feature of the object, a vector of dimension (ik+1 − ik + 1). We use the MSE loss for
numerical features and the cross-entropy loss for categorical ones.

Now, it is important to note that, in order to correctly train the model, the representation r needs to be matched with the
target vector y of the object that r is representing. However, this is very challenging, as the models can represent any object
in any of the slots. Therefore, following Dittadi et al. (2021b), we adopted two different strategies to match slots with
objects. The first is called loss matching: The loss for each pair of slot and object is computed, resulting in a loss matrix
L, where Li,j is the loss between the predicted features from the jth slot and the target features from the ith object in the
scene. Then, the Hungarian matching algorithm is used to find the pairs of slots-objects that minimize the sum of the loss.
The second approach is called mask matching: The masks predicted by the models and the ground masks are matched, to
find the pairs that have the smallest difference. By using loss matching, the assumption is that the initial errors that are
inevitable (because the downstream model has not been trained yet) will eventually disappear. When using mask matching,
this problem disappears, however, we rely on the ability of the models to generate masks that closely match the ground truth,
which is not the case for models that are hyper-segmenting the input, as is often the case in our study.

C.2. ARI and MSE

We use the standard definitions of Adjusted Rand Index (ARI) and Mean Square Error (MSE).

The ARI, as the name suggests, is the Adjusted version of the Rand Index. The Rand Index is defined as follows. Given a
set of n elements S and two partitions A and B of this set, the Rand Index looks at the number of pairs of elements from S
and what set they belong to in the two partition. The definition is the following:

R :=
m11 +m00

m11 +m00 +m10 +m01
,

where m11 is the number of pairs that are in the same set in both A and B, m00 the number of pairs that are in different sets
in both partitions, m10 the number of pairs that are in the same set in A but different sets in B, and m01 counts how many
pairs are in different sets in A but the same set in B.

Then, the ARI normalizes and corrects the bias from the Rand Index based on a given null hypothesis (Hubert & Arabi,
1985), such that an ARI of 0 results from completely random partitions of the set, while 1 when the two partitions coincide.

It is important to highlight that the ARI is dependent on the size of the partitions and the number of elements present in each
set of the partition, which are both assumed to not change across the entire dataset, which is not always true for the current
application.

The MSE is computed between each channel in each pixel of the image, following the traditional formula.

D. Implementation of the models
The models were re-implemented in PyTorch (Paszke et al., 2019) and run on NVIDIA A100 or NVIDIA TitanRTX GPUs.
The total approximate training time to reproduce this study is 300 GPU days.

E. Hyperparameter searches
E.1. Baselines

The baselines were obtained by training the models on the two datasets with 3 different seeds. The parameters are taken
from the original papers, but for MONet we use different values for the foreground and background sigma, as suggested by
Greff et al. (2019). We stopped the training for all runs in our study, even the ones described later, to 500k steps.
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E.2. Improving MONet

Starting from the baseline results, we first explored the hyperparameter space manually, to develop an intuition regarding the
effect of each hyperparameter on the performance.

We then performed a hyperparameter search for MONet. We ran a full search, resulting in 36 runs. Because of the high
number of runs, we decided to use a single seed. The parameters are listed in Table 1. Those that are not listed were kept
unchanged. All combinations of parameters are tested, but foreground sigma and background sigma have been
changed in pairs, so that when the foreground sigma is 0.05, the background sigma is 0.03 and when foreground sigma is
0.5, background sigma is 0.3 to keep consistent weights of the reconstruction loss.

Some analysis on the results of these models can be seen in Fig. 6, where we can see how the parameters have little to
no impact on the overall performance of the model. What proved to be most effective was reducing the number of skip
connections in the U-Net and using a small sigma for the loss function. However, these results are not very conclusive, as a
small number of skip connections is actually just increasing the ARI slightly by reconstructing bigger patches of objects in
the slots and not actually separating them correctly.

Parameter Value(s)
foreground sigma 0.05, 0.5
background sigma 0.03, 0.3

gamma 0.05, 1, 5
latent size 64

latent space MLP size 128
decoder input channels 66

number of skip connections in U-Net 0, 3, 5
dataset CLEVR, Multi-dSprites

Table 1: Hyperparameter search for MONet.

E.3. Representation bottleneck study

The representation bottleneck study was done by changing the latent space of both MONet and Slot Attention with 2 seeds
and without changing any other parameter, resulting in 32 runs. The latent sizes tested are shown in Table 2. The findings
are summarized in the main text of the paper.

MONet Slot
Attention

8 32
16 64
32 128
64 256
128 512

Table 2: Latent space sizes tested in the study for each of the two models.

E.4. Improving Slot Attention

We tried to increase the size of the encoder and decoder architecture as much as possible, while being reasonable regarding
training time and GPU memory. We tested several architectures, with the objective of improving the overall reconstruction
quality by reducing the blurriness. We quickly realised that we needed a very deep architecture, therefore, we opted to use
residual layers. The final architecture managed to achieve the best results when averaged over 3 different seeds. Each layer is
a stack of two convolutional layers, with Leaky ReLU activation functions, a skip connection and we also employ the re-zero
strategy (Bachlechner et al., 2021). We increased the latent size to 512, used upscaling in the encoder and downscaling in
the decoder. We fixed the broadcast size of the decoder to 32. We used a stack of 16 residual blocks. The architecture of
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the encoder is described in Table 3, and the decoder is symmetrical (starting from 256 channels going down and instead
of downscaling we have upscaling). To map from the input number of channels to the desired ones we use an additional
convolutional layer, the same for the output channels. We did not experiment with the number of iterations that the Slot
Attention Module performs, but it would be interesting to understand whether this parameter is very influential in natural
scenes.

Name Number of channels Activation/ Comment

Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU

Downscaling Only for CLEVR
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU
Residual Block 64 Leaky ReLU

Downscaling
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 128 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU
Residual Block 256 Leaky ReLU

Table 3: Final encoder used for the Slot Attention model that obtained the best results in terms of both ARI and MSE. Residual Blocks
always have 2 convolutions and use ReZero (Bachlechner et al., 2021), two downscaling operations are used for the CLEVR dataset,
while one for Multi-dSprites. The decoder is perfectly simmetrical to this structure.
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Figure 6: Results (top row: ARI; bottom row: MSE) from the hyperparameter search for MONet. Although increasing gamma or
foreground sigma in the loss function successfully deteriorates reconstruction performance (MSE), they are not sufficient to improve
the ARI (in fact, the increase of foreground sigma actually decreases the ARI). A smaller number of skip connections also achieves the
desired higher MSE, which corresponds to higher ARI only for small values of sigma. Often, having big values for gamma and sigma
results in trends opposing the desired ones in terms of ARI.
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F. Additional results

Figure 7: The ARI (↑) and MSE (↓) show no significant change across latent space sizes, supporting that the representation bottleneck
(see main text) is not a sufficient inductive bias for object separation. Training instability can be seen in Slot Attention with latent size
above 128. Two seeds for each latent size are used. Shown are mean (line) and 95% confidence interval (shaded area).

Figure 8: Pearson’s correlation coefficient for all runs, grouped by dataset and showing the different combinations of matching and
downstream model. The correlation between downstream model’s performance and the ARI (↑) and MSE (↓) metrics shows that ARI
is a strongest indicator of good representation quality when the object-centric models are being trained on data with complex texture.
Difference in correlation between different matching methods and downstream models is again to be attributed to the poor mask generation
quality, which makes mask matching very challenging.
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Figure 9: Comparison of the downstream performance for all combinations of slot-object matching and model type (results on from the
test set, downstream models trained on the validation set). We notice how accuracy (↑) and R2 (↑) both increase significantly for both
MONet models when using loss matching compared to mask matching (especially for numerical features). This is expected, as the masks
generated by MONet suffer substantially from hypersegmentation, which makes mask-matching a very unstable way to pair slots with the
correct object. Instead, Slot Attention manages to generate more accurate masks, which results in more consistent performance between
mask and loss matching methods.
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Figure 10: Scatter plots to inspect correlation between downstream performance, and ARI (↑) and MSE (↓). The color shows the different
models, which clearly display distinct patterns. A visual inspection shows that there is very little correlation between downstream
performance and MSE. Only loss matching is shown here.
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G. Qualitative results

(a) Baseline MONet (b) Best result MONet

(c) Baseline Slot Attention (d) Best result Slot Attention

Figure 11: Qualitative results for the separation performance of the models in the comparative study on Multi-dSprites. From left to right
in all subfigures: (top) input, final reconstruction, reconstruction for each of the six slots (no predicted mask is applied here, only the
visual appearance part of the reconstruction is shown), (bottom) mask for each of the six slots. Here the difference between the two
versions of Slot Attention is even more noticeable, and we can see how MONet is blurring the masks. However, MONet never manages to
reconstruct the correct visual appearance, even when a more accurate shape of the objects is being predicted by the attention module.
Balancing visual appearance and shape is much more challenging in MONet.
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(a) Baseline MONet (b) Best result MONet

(c) Baseline Slot Attention (d) Best result Slot Attention

Figure 12: Qualitative results for the separation performance of the models in the comparative study on CLEVR. From left to right in all
subfigures: (top) input, final reconstruction, reconstruction for each of the six slots (no predicted mask is applied here, only the visual
appearance part of the reconstruction is shown), (bottom) mask for each of the six slots. The masks on the improved Slot Attention start to
include more of the background for each object. In both baseline and best result, Slot Attention isolates each object in a distinct slot, rarely
over-segmenting the input, a stark difference when comparing to Multi-dSprites. For MONet, it manages to perform better in CLEVR
than Multi-dSprites, however, the best result is still hypersegmenting the input and not blurring it. Overall, MONet cannot reconstruct the
visual appearance using the VAE, and leaves all the heavy lifting to the attention module.


