

Neural Architecture Search with Loss Flatness-aware Measure

Joonhyun Jeong¹ Joonsang Yu^{1 2} Dongyoon Han² YoungJoon Yoo^{1 2} ¹Image Vision, NAVER CLOVA ²NAVER AI Lab {joonhyun.jeong, joonsang.yu, dongyoon.han, youngjoon.yoo}@navercorp.com

Main	Co	ntri	huti	ons
ram			JULI	

- A new search proxy, FBS: Flatness lacksquareof local minima as a measure for searching generalizable architectures.
- **Baseline Improvements:** FBS further boosts generalizability of conventional search metrics.
- **Task-generalizability:** FBS searches

Method

Objective: In an entire architecture search space A, find the maximal **flat** architecture *a**.

$$a^* = \operatorname*{argmax}_{a \in A} F_{val}(W_A^*(a)).$$

How to measure **flatness of local**

Experimental Results

Results on ImageNet

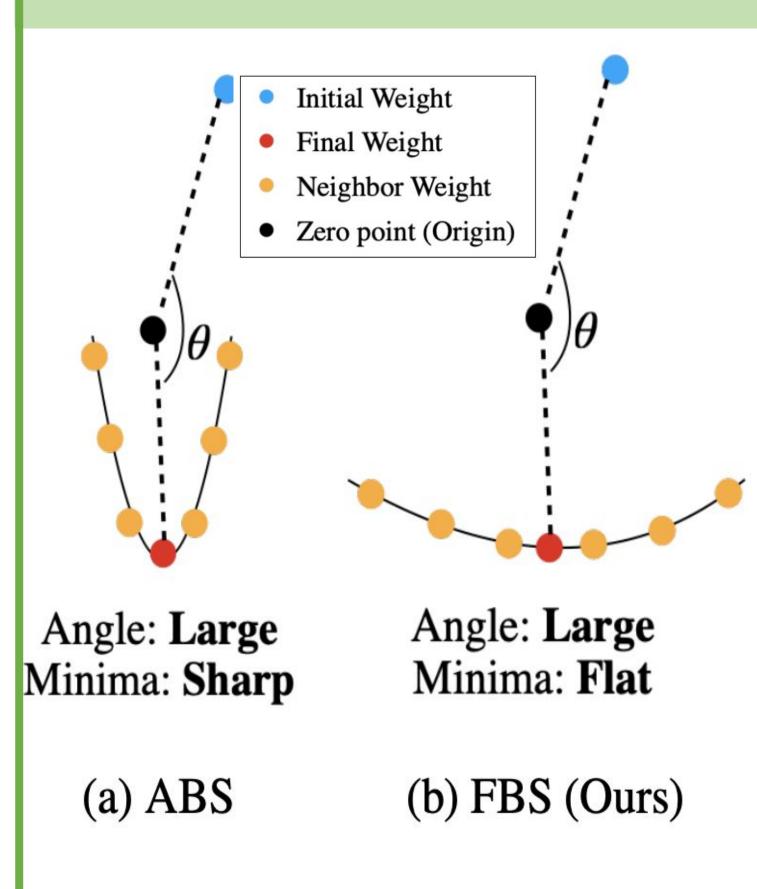
- Transfer from CIFAR-100

Method	Params (M)	FLOPs (G)	Top-1 Acc (%)	Top-5 Acc (%)
PC-DARTS	5.3	0.59	74.75	92.16
RLNAS	5.4	0.61	75.00	92.31
DropNAS [†]	5.1	0.57	75.07	92.33
P-DARTS	5.1	0.58	75.30	92.50
SPOS	5.4	0.60	75.37	92.23
GeNAS (Ours)	5.2	0.58	76.05	92.64

our **GeNAS** achieves **state-of-the-art Performance** with similar # params and FLOPS!

generalizable architectures on downstream tasks such as object detection.

Motivation



Investigate an **open question**: \bullet

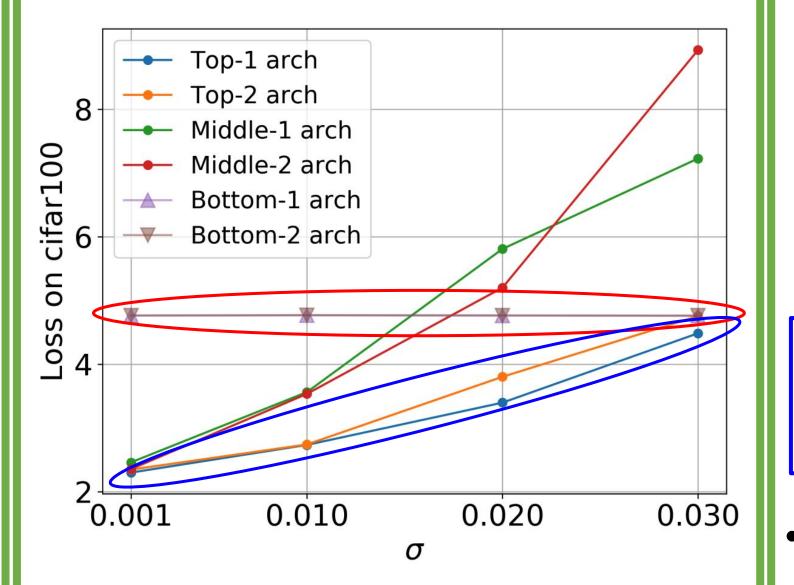
minima,
$$F'_{val}$$
 ?

$$F_{val}(\theta) = \left(\sum_{i=1}^{t-1} \frac{L(\theta + N(\sigma_{i+1})) - L(\theta + N(\sigma_i))}{\sigma_{i+1} - \sigma_i}\right)^{-1}$$

1. Get a loss surface by **perturbing** the converged weight θ with Gaussian Noise $N(\sigma)$ for t-1 times.

2. Estimate flatness of the loss surface.

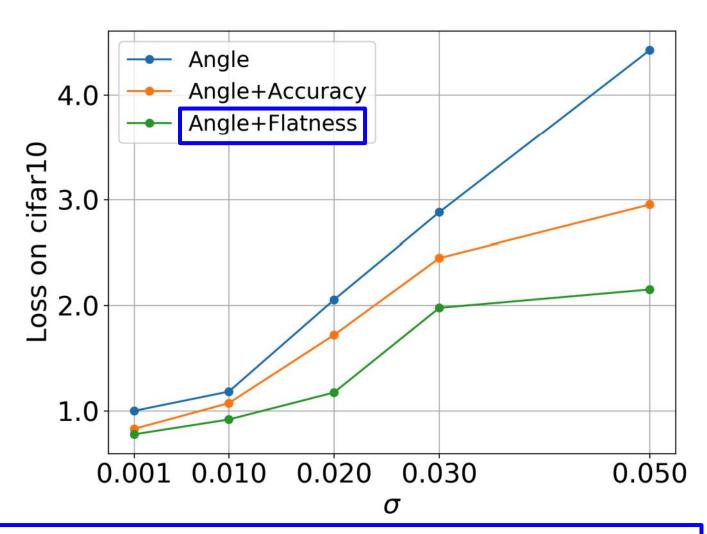
Consideration on **loss depth**:



Collaborative effect of FBS on other conventional search metric (Angle)

Flatness (%)	Params (M)	FLOPs (G)	Top-1 Acc (%)	Top-5 Acc (%)
0	5.43	0.61	75.00	92.31
20	5.45 (+0.02)	0.60 (-0.01)	75.22 (+0.22)	92.39 (+0.08)
43	5.57 (+0.14)	0.61 (+0.00)	75.58 (+0.58)	92.44 (+0.13)
76	5.41 (-0.02)	0.60 (-0.01)	75.63 (+0.63)	92.54 (+0.23)
89	5.41 (-0.02)	0.60 (-0.01)	75.72 (+0.72)	92.46 (+0.15)

As proportion of **flatness increases**, test accuracy **consistently increases** without change of # params and FLOPs.



Flatness enables Angle to have better generalizability with much smoother test-loss surface.

Flatness -> Generalizability (?)

- ➡ Can quantifying flatness acquire generalizable architectures?
- **Insufficient Generalization**:

Comparison	Kendall's Tau				
	CIFAR-10	CIFAR-100	ImageNet16-120		
Angle & Flatness	0.4302	0.4724	0.4097		
Accuracy & Flatness	0.7923	0.7568	0.7620		

- Conventional search metrics have a large headroom for better generalization in terms of flatness.

- Especially, Angle-Based Searching (ABS) shows significantly low correlation with flatness.

- Naive flatness-based searching selects **sub-optimal** architectures (red circle).

- For achieving top-performances (blue circle), depth of loss should be considered together as:

$$F_{val}(\theta) = \left(\sum_{i=1}^{t-1} \left| \frac{L(\theta + N(\sigma_{i+1})) - L(\theta + N(\sigma_i))}{\sigma_{i+1} - \sigma_i} \right| + \frac{\left| \alpha \right| \frac{L(\theta + N(\sigma_1))}{\sigma_1} \right| \right)^{-1}$$

where σ_1 is the smallest perturbation degree.

Generalizability on Object Detection - Transfer results on MS-COCO

Method	Params (M)	FLOPs (G)	AP	AP_{50}	AP_{70}	AP_S	AP_M	AP_L
PC-DARTS	5.3	0.59	35.56	55.50	37.45	19.85	38.80	47.70
RLNAS	5.4	0.61	35.98	55.78	38.22	20.80	39.72	47.90
SPOS	5.4	0.60	36.04	56.30	38.08	20.01	39.49	47.76
DropNAS	5.1	0.57	36.39	56.14	38.45	21.88	39.82	48.20
GeNAS (ours)	5.2	0.58	37.05	56.92	39.19	20.70	40.68	49.74

GeNAS can excavate **well-generalizable** architecture on object detection task, compared to other NAS methods.

Conclusion

Our GeNAS framework provides...

- A **promising proxy** for predicting generalizability of a model.
- Superior generalizability than conventional search metrics on various tasks and datasets.