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Abstract
Efficient deployment of deep neural networks
across many devices and resource constraints,
especially on edge devices, is one of the most
challenging problems in the presence of data-
privacy preservation issues. Conventional ap-
proaches have evolved to either improve a single
global model while keeping each local training
data decentralized (i.e., data-heterogeneity) or to
train a once-for-all network that supports diverse
architectural settings to address heterogeneous
systems equipped with different computational
capabilities (i.e., model-heterogeneity). However,
little research has considered both directions si-
multaneously. In this work, we propose a novel
framework to consider both scenarios, namely
Federation of Supernet Training (FedSup), where
clients send and receive a supernet whereby it
contains all possible architectures sampled from
itself. Specifically, in the FedSup framework, a
weight-sharing approach widely used in the train-
ing single shot model is combined with the aver-
aging of Federated Learning (FedAvg). Under our
framework, we present an efficient algorithm (E-
FedSup) by sending the sub-model to clients in
the broadcast stage for reducing communication
costs and training overhead.

1. Introduction
Deep neural networks (DNN) have achieved remarkable em-
pirical success in many machine learning applications. As
a next evolution, there has been an increasing demand for
training a model by using local data from mobile devices
and the Internet of Things (IoT) because billions of local
machines worldwide can bring more computational power
and amounts of data than those of the center server ma-
chine (Lim et al., 2020; El-Sayed et al., 2018). However,
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it is still challenging to deploy them efficiently on diverse
hardware platforms whose specification (i.e., latency, TPU)
is significantly various (Cai et al., 2019) and to train a global
model without sharing local data. Federated learning (FL) is
one of the most popular paradigms of collaborative machine
learning (McMahan et al., 2017; Li et al., 2019; Han et al.,
2020; Li et al., 2018; Karimireddy et al., 2019; Mohri et al.,
2019; Lin et al., 2020; Acar et al., 2021). In general, to train
the central server (e.g., service manager) in the FL frame-
work, each client (e.g., mobile devices or whole organiza-
tion) updates its local model via their private data by itself;
all local updates are aggregated to the global model; after
which the procedure is repeated until convergence. Most no-
tably, federated averaging (FedAvg) (McMahan et al., 2017)
uses averaging as its aggregation method over the local
learned models on clients. Such FL framework ensures us
to occlude many of the systematic privacy leakages (Voigt
& Von dem Bussche, 2017).

Recent FL works have been evolving into designing new
objective functions for the aggregation of each model (Acar
et al., 2021; Karimireddy et al., 2019; Li et al., 2018; Wang
et al., 2020; Felix et al., 2020; Yuan & Ma, 2020; Li et al.,
2021a), using auxiliary data in the center server (Lin et al.,
2020; Zhang et al., 2022), encoding the weight for an ef-
ficient communication stage (Wu et al., 2022; Hyeon-Woo
et al., 2022; Xu et al., 2021), or recruiting helpful clients
for more accurate global model (Li et al., 2019; Cho et al.,
2020; Nishio & Yonetani, 2019). On the other side, there
has been tremendous recent interest in deploying the FL
algorithms for real-world applications such as mobile de-
vices and the Internet of Things (IoT) (Nishio & Yonetani,
2019; Diao et al., 2021; Horvath et al., 2021; Hyeon-Woo
et al., 2022). However, less has been tackled on the issue
of delivering compact models specialized for the edge de-
vice having different hardware platforms and efficiency con-
straints (Figure 1 (a)). It is known that the inference time of a
neural network varies greatly depending on the specification
of devices (Yu et al., 2018). It would become a significant
bottleneck at every aggregation round in FL’s synchronous
training if a same-size model is distributed to clients without
considering local resources (Li et al., 2020).

This paper presents a novel framework to consider both



Supernet Training for Federated Image Classification under System Heterogeneity

Server

Supernet

Client A
Tiny AI

Client B
Mobile AI

Client C
Cloud AI

Server

Client C
Cloud AI

Client B
Mobile AI

Client A
Tiny AI

Vanilla
Network

Server

Supernet

Client A
Tiny AI

Client B
Mobile AI

Client C
Cloud AI

Server

Client C
Cloud AI

Client B
Mobile AI

Client A
Tiny AI

Supernet

Communicate Personalization DeployBig size Medium size Small size Dataset

(a) Standard Federated Learning

(c) FedSup

(b) Standard Supernet Training

(d) Efficient FedSup

Figure 1. Overview of (a) standard FL framework, (b) supernet training in a standard datacenter optimization (i.e., centralized settings), (c)
our proposed federation of supernet training framework (FedSup), and (d) efficient FedSup algorithm (E-FedSup).

scenarios, namely Federation of Supernet Training (FedSup)
which encompasses the training of sub-models nested in
a supernet under system heterogeneity. Using the weight-
sharing in supernet training, FedSup forwards a supernet to
each local client and ensembles the training of sub-models
sampled from itself at each client (Figure 1 (c)). Referred
to (Diao et al., 2021), we manifest a Efficient FedSup (E-
FedSup) broadcasting a sub-model to local in lieu of a full
supernet (Figure 1 (d)). For the evaluation of both methods,
we focus on improving the global accuracy (of the server;
universality) and the personalized accuracies (of on-device
fine-tuned models; personalization).

Organization. The remainder of this paper is organized
as follows. In Section 2, we discuss the recent literature on
model-heterogeneity in FL and supernet training in NAS. In
Section 3, we address our motivation for collaborating the
federated learning with supernet training and provide our
main methods, the Federation of Supernet Training (FedSup)
and efficient FedSup (E-FedSup). In Section 4, we exhibit
experimental results. Finally, Section 5 concludes the paper.

2. Related Work
Model Heterogeneity in FL. Model heterogeneity in FL,
the problem of training heterogeneous local models with
varying computation complexities, has remained largely
under-explored in comparison with statistical data hetero-
geneity. Recently, a few works have been proposed in the
following direction: generating a set of sub-models through
a hypernetwork that outputs parameters for other neural
networks (Shamsian et al., 2021), using a pruned model
from a global model (Bouacida et al., 2020; Horvath et al.,
2021; Luo et al.), and distilling the knowledge from local

to global by using either extra proxy datasets or genera-
tor (Lin et al., 2020; Afonin & Karimireddy, 2022). How-
ever, pruning approaches are not really cost-effective in
terms of inference time, and distillation-based methodolo-
gies require additional training overhead. Using a hyper-
network (Shamsian et al., 2021) or sampling a sub-model
from the global model (Diao et al., 2021) may avoid such
issues, but the sub-model scale is limited to only a single
direction such as width or kernel size. Furthermore, such
optimization is simple so that the accuracy gap among sub-
models should be bridged through some advanced training
techniques. Newly, (Mushtaq et al., 2021) apply continu-
ous differentiable relaxation and gradient descent, but it is
significantly sensitive to hyperparameter choices.

3. Method
3.1. Problem Settings: Federated Learning

The main goal of FL (McMahan et al., 2017) is to solve the
following optimization problem:

min
w

f(w) ≜ min
w

∑
k∈S

pkFk(w) (1)

where S is the set of total clients, pk is the weight of client
k, such as pk ≥ 0, and

∑
k pk = 1. The local objective of

client k is to minimize Fk(w) = Exk∼Dk
[ℓk(xk,yk;w)]

parameterized by w on the local data (xk,yk) from local
data distribution Dk. FedAvg (McMahan et al., 2017), the
canonical algorithm for FL, involves local update, which
learns a local model wt

k (Eq. 2) with learning rate η and
synchronizing wt

k with wt every E steps,

wt
k ≜

{
wt−1

k − η∇Fk(w
t−1
k ) if t mod E ̸= 0

wt if t mod E = 0
(2)
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and global aggregation, which learns the global model
wt (Eq. 3) by averaging all wt

k with regard to the client
k ∈ St uniformly sampled at random where pk is used as
|Dk|
|D| .

wt =
∑
k∈St

pkw
t
k (3)

3.2. Weight Sharing in Client System Heterogeneity
Weight-sharing NAS is an effective technique for assem-
bling all the architectures as its sub-networks and jointly
trains the supernet (Cai et al., 2019; Yu et al., 2020; Wang
et al., 2021b;a). With the access permission to local data
from the center server, it can be used for tackling the client
system heterogeneity, the diversity in the processing capa-
bilities and network bandwidth of clients, but not vice versa.
Assuming the weights of the supernet as w and the sub-
models warch , then the problem is generally formulated as
follows:

min
w

∑
warch⊂w

Ex∼D[ℓ(x,y;warch)] where D = ∪kDk

To preserve the data privacy, the above can be reformulated
with a simple double summation:

= min
w

∑
warch⊂w

∑
k

pkEx∼Dk
[ℓk(xk,yk;warch)]

= min
w

∑
k

pk
∑

warch⊂w

Fk(warch)
(4)

After exchanging the order of two summations, a new ob-
jective (Eq. 4) is obtained, termed as Federation of Supernet
Training (FedSup) (Algorithm 1). Obviously, it is highly
non-trivial due to the distinct learning dynamics of various
child models under data heterogeneity; training strategies
are mainly discussed in subsection 3.3.

3.3. Training Strategies for FedSup
Architecture Space The details of our search space are
presented by referring to the previous neural architecture
search (NAS) and FL approaches (Cai et al., 2019; Yu et al.,
2020; Oh et al., 2021). Our network architecture consists of
a stack with the MobileNet V1 blocks (Howard et al., 2017),
and the detailed search space is summarized in Appendix.
The arbitrary numbers of layers, channels, and kernel sizes
can be sampled from our network. Following previous set-
tings (Yu et al., 2018; 2020), lower-index layers in each
network stage are always kept. Both kernel size and channel
numbers can be adjusted in a layer-wise manner.
Inplace Distillation. During the FedSup training, a sub-
model can be distilled with the soft labels predicted by the
full model (biggest child), called inplace distillation (Yu
et al., 2018). Without any additional models, it can super-
vise a sub-model’s representation aligning into the same

Algorithm 1 Generic Framework for FedSup
INPUT : Supernet w, the number of sampled child models

M , weight update function UPDATE
1: Initialize SuperNet w0

2: for t← 0, . . . , T − 1 do
3: St ← SAMPLECLIENTS
4: for each client k ∈ St in parallel do
5: wt,0

k ← wt

6: for e← 0, . . . , E − 1 do
7: for m = 1, . . . ,M do
8: wt,e

archk,m
← SAMPLEMODEL(wt,e

k )

9: wt,e+1
archk,m

← OPTIMIZE(wt,e
archk,m

)
10: end for
11: wt,e+1

k ← UPDATE(wt,e+1
archk,1

, . . . ,wt,e+1
archk,M

)
12: end for
13: end for

wt+1 ←
∑

k∈St pkw
t,E
k

14: end for
direction (i.e., representation alignment; a concept from
(Kim et al., 2021)). The temperature hyperparameter and
the balancing hyperparameter between distillation and target
loss (Hinton et al., 2015) are not used in our experiments.

M Sampled Child Models and Sandwich Rule. At every
local training iteration, the gradients are aggregated from
M sampled child models. If M ≥ 3, the smallest child
and the biggest child are included where the gradients are
clipped (i.e., sandwich rule (Yu et al., 2018; 2020)). Through
these aggregated gradients, a supernet’s weight is updated
where the “smallest” child denotes the model having the
thinnest width, shallowest depth, and smallest kernel size
under the pre-defined architecture space.

3.4. Efficient FedSup (E-FedSup)

If inplace distillation and sandwich rule are not applied
during the local training, an alternative objective function
can be used instead of Eq. 4:

min
w

∑
k

pk
∑

warch⊂w

Fk(warch)︸ ︷︷ ︸
FedSup

≥ min
w

∑
k

pkFk(warchk
)︸ ︷︷ ︸

E-FedSup

In the broadcast stage, a sub-model is sent to each local
client to achieve the efficiency on network bandwidth. A
chief difference in the optimization is that FedSup samples
a new sub-model every iteration, but E-FedSup trains a
pre-fixed sub-model received from communication at local.
E-FedSup saves communication cost by sending the child
locally, and also curtails training overhead because it trains
one model per iteration in lieu of several child models.

4. Experiment
4.1. Experimental Settings
Heterogeneous Distribution of Client Data. We conduct
heterogeneous data distribution settings referring to the lit-
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Table 1. Personalized accuracy on CIFAR-100 with 100 clients, s = 50, f = 0.1, and m = 0.5. A full supernet (Big) with dynamic width
is utilized while the static version is applied on other algorithms.

Algorithm Local-Only FedAvg [2017] Ditto [2021b] LG-FedAvg [2020] Per-FedAvg [2020] FedSup E-FedSup

Personalized Acc. 27.98±4.12 49.61±5.10 44.10±5.75 39.92±5.02 44.21±6.23 56.51±5.15 55.75±5.61

Table 2. Initial and personalized accuracy on CIFAR100 under various FL settings with 100 clients. The initial and personalized accuracy
indicate the evaluated performance without fine-tuning and after five fine-tuning epochs for each client, respectively.

FL Settings s=50 s=10

f τ A FedSup E-FedSup FedSup E-FedSup

Initial Personalized Initial Personalized Initial Personalized Initial Personalized

0.1

1
B 38.94±5.30 53.55±4.81 39.37±5.40 54.88±4.79 22.43±5.11 65.12±5.95 22.42±5.32 64.75±6.38

M 38.09±5.40 53.31±5.26 39.33±5.10 54.81±5.22 22.40±5.23 64.95±6.21 22.23±5.66 64.73±6.55

S 36.01±5.50 52.29±4.91 37.34±5.26 53.08±5.20 21.17±5.67 64.18±6.52 21.32±5.59 64.29±6.69

5
B 43.83±6.20 56.51±5.15 43.53±6.22 55.75±5.61 26.07±6.58 68.09±6.22 24.56±7.35 67.68±6.49

M 42.21±5.78 55.42±5.35 42.24±5.72 55.38±5.51 24.81±6.99 67.93±6.32 24.76±7.23 67.87±6.50

S 37.94±5.15 52.15±5.28 37.19±5.10 52.33±5.38 20.27±6.98 64.41±6.30 20.28±6.71 64.35±5.99
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Figure 2. Attributes (e.g., initial acc., personalized acc., and
FLOPS) of training process. Each dot represents a sub-model
and 500 child models are sampled from the supernet.
erature (McMahan et al., 2017; Oh et al., 2021; Lin et al.,
2020). Data is divided into the same-sized shards by consid-
ering its label distribution. Because there is no overlapping
data between shards, the size of a shard is defined by |D|

N×s ,
where |D| is the data set size, N is the total number of
clients, and s is the number of shards per user.

Training Details. To evaluate the personalized accuracy,
each client has the same label distribution on local training
and test data. Referred to (Oh et al., 2021), we control FL
environments with following hyperparameters: client frac-
tion ratio f , local epochs τ , shards per user s, and Dirichlet
concentration parameter β. f is the number of participating
clients out of the total number of clients in every round and a
small f is natural in the FL settings because the total number
of clients is numerous. For the FedSup training, we use the
number M of randomly sampled child model as equal to 3
and appy the inplace distillation. "Big (B)", "Medium (M)",
"Small (S)" indicate the amount of FLOPS of sub-model
sampled from the supernet located in the Pareto-frontier. We
calculate the accuracy of global model and local models
following the federated personalization evaluation proce-
dure proposed in (Wang et al., 2019) and (Oh et al., 2021).
Details are provided in Appendix.
4.2. Evaluation on the Common FL Settings
Personalization. As mentioned in literature (Oh et al.,
2021; Luo et al., 2021), it is shown that updating only head
has slightly better performance than the others including
local-only training (Table 1).

Compounding Dimensions. Table 2 describes the initial
and personalized accuracies when combining the dimen-

sions for architecture space. In most cases, FedSup has
slightly less generalization error than E-FedSup in the global
model (initial accuracy) while the personalized accuracy be-
comes almost similar when the five fine-tuning epochs are
applied. Both FedSup and E-FedSup show a slight decrease
in performance as a model size gets smaller.

Pareto Frontier. We compare the accuracy vs. FLOPS
Pareto that finds the set of solutions where improving one
objective will degrade another in the Multi-Objective Opti-
mization (Eriksson et al., 2021). Here, we randomly sample
500 sub-models from the supernet and estimate their initial
and personalized accuracies. As Figure 2 shows, FedSup has
better Pareto frontier than E-FedSup for the initial accuracy
while those for personalized accuracy are almost similar.
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Figure 3. Comparison
of other model het-
erogeneity methods
about the inference
time per image of
each sub-model.

Inference Time. Figure 3 shows
the results of the boxplot plotting sub-
models’ inference time comparing
with other model heterogeneity meth-
ods FjORD (Horvath et al., 2021)
and HeteroFL (Diao et al., 2021).
We demonstrate that FedSup spawns
more efficient models in terms of lo-
cal inference time. Because FjORD
and HeteroFL are unstructured prun-
ing or channel pruning-based meth-
ods, ours have lower processing time
benefitted from dynamic depth. We
measure the inference time on the NVIDIA 2080-Ti GPU.
5. Conclusion
In this paper, we propose a novel branch of approaches,
Federation of Supernet Training (FedSup) under system het-
erogeneity. Our work engages in the solutions of FL for
both data-heterogeneity and model-heterogeneity. Specifi-
cally, FedSup aggregates a large number of sub-networks
with different capabilities into one global model at once.
In addition, we further develop an efficient version of Fed-
Sup (E-FedSup) which reduces the model size transferred
per round as well as local training overhead.
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A. Overview of Appendix
In this supplementary material, we present additional details, results, and experiments that are not included in the main paper
due to the space limit.

B. Ethics Statement
To address potential concerns, we describe the ethical aspect in respects to privacy, security, infrastructure level gap, and
energy consumption.

Privacy and Security. Despite the promise of FL, owing to the presence of malicious users or the stragglers in the network,
some workers may disturb the protocols and send arbitrary/adversarial messages that disturbs the generalization during FL.
Recently, to tackle the system heterogeneity, some works allows the server to use proxy data or transmit encrypted data
from local to server, but it may infringes on privacy. FedSup is also able to have such potential risks during communication.
However, because FedSup can enable the training of models under heterogeneous system without using any proxy dataset,
our methods could be uses as a general solution to personalize the model, having less risks of privacy and security under
system heterogeneity. Under adversarial attacks, it would be a nice direction to investigate the defense methods regarding
the robustness against such adversarial risks.

Infrastructure Level Gap. In real-world applications, there is a bandwidth issues between clients and the server. More
precisely, because of some limited-service access to areas where communication is rarely possible. Sending a model of the
same size can greatly affect the synchronize training of FL with such infrastructure level gap. Because our work is efficient
in terms of communication cost, we can deploy the model resource-adaptively. In addition, it is possible to use the model
adaptively enough within the local according to the model resource and situation.

Energy Consumption. Our methods is more efficient than other methods in the respect of energy consumption: (1)
communication efficiency and (2) design costs. Firstly, if E-FedSup is used, the sub-model is transferred to local as a
substitute for the full supernet. Therefere, noticeable energy-saving effects can be obtained. On the other side, since
our methods can design various architectures rather than specialized neural networks, our approach reduces the cost of
specialized deep learning deployment from O(N) to O(1) (Cai et al., 2019). Even, our methods has less generalization
errors than other FedAvg-variant methods while total communication costs are the same, so further energy-savings can
happen in the respect of convergence speed.
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C. Limitations and Future Directions
In this sections, we describe the limitations of our work and future directions for further development.

Limitations. Although illustrating the superiority of our proposed methods over state of the art, the bottleneck lies in the
presence of arbitrary device unavailability or adversarial clients that disturbs the training. We only consider vision-centric
classification tasks on smaller datasets (CIFAR-10, CIFAR-100, CINIC, PathMNIST). We do not investigate a large-scale
datasets (namely ImageNet); FL framework gets computationally more prohibitive as the number of clients and local training
iterations are increasing.

Future Directions. In future work, we aim to explore more efficient training strategies in the presence of stragglers and
adversarial users. Furthermore, we improve the robustness of FedSup families in more resource-intensive settings. We intend
to investigate our methods on other applications such as object-detection, semantic segmentation, and natural language
processing models. Lastly, we plan to explore why FedSup and E-FedSup has similar personalization accuracies while the
global accuracy has slight gap between FedSup and E-FedSup.

D. Conceptual Comparison to Prior Works
Neural architecture search (NAS) studies have also suffered from such model heterogeneity issues in deploying resource-
adaptive models to clients, but have resolved this challenge by training a single set of shared weight from one-shot
models (Cai et al., 2019; Yu et al., 2020; Wang et al., 2021b) (Figure 1 (b)). However, it has been under-explored under data-
heterogeneity scenarios that can provoke the training instability. Recently, some works have studied the model heterogeneity
in FL by sampling/generating a sub-network (Mushtaq et al., 2021; Diao et al., 2021; Shamsian et al., 2021) or using a
pruned model from a global model (Horvath et al., 2021; Luo et al.). Such methods have limitations on model scaling (e.g.,
depth (#layers), width (#channels), kernel size), training stability, and personalization of each clients.

Designing specialized DNNs for every scenario is labor-intensive and computationally prohibitive with human-based
methods or sample-based NAS (Liu et al., 2018). Such methods require repeating the network design process and replacing
the network design process from scratch in each case, and therefore their total cost increases linearly as the number
of deployment scenarios increases. Furthermore, in the presence of a federated environment, such design cost is also
significantly affected by the number of participating clients and the amount of each local data, even considering the network
bandwidth of clients. To mitigate such issues, some works attempt to examine the single-shot model under data heterogeneity.
We do not consider the works that assumed the availability of proxy data in the server (Lin et al., 2020; Zhang et al., 2022).

Recently, numerous studies have been studied to address the problem of either data heterogeneity or model heterogeneity.
As discussed in Section 2, literature can be categorized into several groups with FedSup and E-FedSup: data heterogeneity,
model heterogeneity, and their hybrid. Table 3 systematically compares related methods in the respect to flexibility, data-
privacy, efficiency on design, and efficiency on communication. More detailed explanations are described in Section 2. To
the best of our knowledge, our methods are the first method to satisfy the two conflicting factors: compounding model scales
(depth, width, kernel size) and personalized models, by taking advantage of both categories.

Table 3. Comparison with related training methods: each method is grouped into three categories. In the first row, "Flexibility": need
not be tied with a specific architecture; "Data Privacy": keep the data privacy on each client; "Efficiency on Design": can design the
architecture efficiently; "Efficiency on Communication": can reduce the communication cost between clients and the server.

Category Data Heterogeneity Model Heterogeneity Hybrid

Method FedAvg [2017] AFD [2020] FedDF [2020] OFA [2019] BigNAS [2020] Ours

Flexibility X X O O O O
Data-Privacy O O O X X O

Efficieny on Design X X X O O O
Efficiency on Communication X O X X X O

Dynamic Neural Network. Compared to static neural networks, dynamic neural networks can adapt their structures or
parameters to the input during inference considering the quality-cost trade-off (Han et al., 2021). To adaptively allocate
computations on demand at inference, some works selectively activate model components (e.g., layers (Huang et al., 2017),
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channels (Lin et al., 2017; Sabour et al., 2017)); a controller or gating modules are learned to dynamically choose which
layers of a deep network (Wu et al., 2018; Liu & Deng, 2018; Wang et al., 2018); Kuen et al. (Kuen et al., 2018) introduce
stochastic downsampling points to adaptively reduce the size of the feature map. By extending the capabilities of already-
developed human-designed neural networks like the MobileNet series (Howard et al., 2017; Sandler et al., 2018), Slimmable
nets (Yu et al., 2018; Yu & Huang, 2019) train a model to support multiple width multipliers (for instance, 4 different global
width multipliers).

Supernet. Supernet, a category of dynamic neural networks, assembles all candidate architectures into a weight-sharing
network where each architecture corresponds to one sub-network. It is an emerging research topic in deep learning,
specifically neural architecture search. It dramatically reduces the huge cost of searching, training, or fine-tuning each
architecture individually whose child models can be directly deployed. Despite its strength, supernet training is highly
challenging (Yu et al., 2018; Yu & Huang, 2019). For the stability of training optimization, it requires many training
techniques such as (1) inplace knowledge distillation (Yu & Huang, 2019) leveraging the soft prediction of the largest
sub-network for the supervision of other sub-networks, (2) modified batch normalization to synchronize the batch statistics
of all child models (Yu et al., 2018; Yu & Huang, 2019), (3) sampling strategy of child models from the supernet (Cai et al.,
2019; Wang et al., 2021b), and (4) modified loss/gradient function (Yu et al., 2020; Wang et al., 2021a).

Benefits of Supernet. Many applications present the use cases of supernet for real-world scenarios. One of the most
notable advantages is that they are able to allocate the user-customized network in consideration of their capabilities on
edge devices (e.g., smartphones, the internet of things) (Cai et al., 2018). Next, the supernet seemingly produces better
representation power than the static version of the network (Yang et al., 2019; Cai et al., 2019). In addition, supernet
alleviates the issue of excessive energy consumption and CO2 emission caused by designing specialized DNNs for every
scenario (Strubell et al., 2019; Cai et al., 2019). Lastly, supernet has superior transferability across different datasets (Zoph
et al., 2018) and tasks (Pasunuru & Bansal, 2019; Gao et al., 2020). All these advantages seem like a double line that will
work well in a federated environment, to our best knowledge, but there are few studies applied in FL yet. Recently, Diao et
al. (Diao et al., 2021) show the possibility of coordinatively training local models by using a weight-sharing concept while
it limits the degree of flexibility (e.g., only width multiplier can adapt), analysis of model behavior, the examination for a
collection of training refinements, and the investigation towards personalization.

Personalized FL. Machine learning-based personalization has emerged for keeping privacy and fairness as well as
recognizing the local particular character. Personalized federated learning has been proposed as one of them to learn
personalized local models. To improve the performance, the methods for the personalized FL models have been evolving in
such directions (T Dinh et al., 2020; Mansour et al., 2020; Oh et al., 2021): user clustering, designing new loss functions,
meta-learning, and model interpolation. With meta-features from all clients, each local client is clustered by measuring
the data distribution and sharing separate models for each cluster without inter-cluster federation (Briggs et al., 2020;
Mansour et al., 2020). Adding a regularizer to the loss function can be a recommended scheme to prevent local models
from overfitting their own local data (T Dinh et al., 2020; Li et al., 2021b). Bi-level optimization between clients and
servers can be interpreted as meta-learning (i.e., Model-Agnostic Meta-Learning (MAML)). This approach aims to obtain a
well-initialized shared global model that facilitates personalized generalization with a few fine-tuning (Jiang et al., 2019; Oh
et al., 2021). Lastly, decoupling the base and personalized layers in a network is used; both types of layers are trained by
clients in addition to the server’s base layers to create a model that is unique to each user (Oh et al., 2021; Chen & Chao,
2021). On the other hand, few studies have been on personalized FL performance under the client system heterogeneity,
which denotes the clients with different computational capabilities.

Until this work, considerable efforts have been devoted to solving the efficiency problems of client system heterogeneity,
which can be categorized into three dimensions as shown in Figure 5. We aim to design a robust framework to combine
the federated averaging scheme with weight sharing on mobile-friendly architectures. We attempt to apply several training
techniques to bridge the gap among three dimensions (Figure 5).

E. Implementation Details for section 4
We build our methods and reproduce all experimental results referring to other official repositories 1, 2, 3.

1https://github.com/facebookresearch/AttentiveNAS
2https://github.com/jhoon-oh/FedBABU
3https://github.com/pliang279/LG-FedAvg

https://github.com/facebookresearch/AttentiveNAS
https://github.com/jhoon-oh/FedBABU
https://github.com/pliang279/LG-FedAvg
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Table 4. MobileNetV1-based search space.

Stage Operator Resolution #Channels #Layers Kernel Sizes

Conv 32x32 32 1 3

1 MBConv 16x16 32-64 1-1 3,5,7

2 MBConv 16x16 64-128 1-2 3,5,7

3 MBConv 8x8 128-256 1-2 3,5,7

4 MBConv 4x4 256-512 3-6 3,5,7

5 MBConv 2x2 512-1024 1-2 3,5,7
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Figure 5. Illustration for the problem settings.

In this section, we present the details of our search space.
Our network architectures consist of a stack with Mo-
bilenetV1 blocks (MBConv) (Howard et al., 2017). The
detailed search space is summarized in Table 4. For the
depth dimension, our network has five stages (excluding
the first convolutional layer (also called Stem)).Each stage
has multiple choices of the number of layers, the number
of channels and kernel size.

E.2. Static Batch Normalizaiton.

We follow the batch normalization settings used in the
previous works (Yu et al., 2018; Diao et al., 2021). Specifi-
cally, because the running statistics of batch normalization
layers can not be accumulated during training owing to
the violence of data privacy as well as different model
size (Huang et al., 2021), track running statistics are not
tracked and simply normalized through the batch data.
For the evaluation, BN statistics are updated as the local data is sequentially queried.

E.3. Experimental Settings

Data Preprocessing. We use the same settings in (Oh et al., 2021). We apply normalization and simple data augmentation
techniques (random crop and horizontal flip) on the training sets of all datasets. The size of the random crop is set to 32 for
all datasets referred to previous works (Oh et al., 2021; Liang et al., 2020; McMahan et al., 2017).

Evaluation. We analyze the algorithms at the client level: (1) the learned global model is broadcast to all clients and is
then evaluated on the test data set of each client Dts

i (referred to as the initial accuracy), (2) the learned global model is
personalized using the training data set of each client Dtr

i by fine-tuning with the fine-tuning epochs of τf ; the personalized
models are then evaluated on the test data set of each client Dts

i (referred to as the personalized accuracy). The values
(X±Y ) in all tables indicate the mean±std of the accuracies across all clients, not across multiple seeds.

Dirichlet Distribution. To simulate a wide range of non-IIDness, we designed representative heterogeneity settings based
on widely used techniques (Yurochkin et al., 2019). A dataset is partitioned by following pc ∼ DirN (β · 1⃗ ) that involves
allocating pk,c proportion of data examples for class c to client k where 1⃗ is the vector of ones.

CIFAR-10. CIFAR-10 (Krizhevsky et al., 2009) is the popular classification benchmark dataset. CIFAR-10 consists of 32
× 32 resolution images in 10 classes, with 6,000 images per class. We use 50,000 images for training and 10,000 images for
testing.
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CIFAR-100. CIFAR-100 (Krizhevsky et al., 2009) is the popular classification benchmark dataset. CIFAR-100 consists of
32 × 32 resolution images in 100 classes, with 6,000 images per class. We use 50,000 images for training and 10,000 images
for testing.

PathMNIST. PathMNIST (Kather et al., 2019) is a collection of 10 pre-processed medical open datasets. It is standaridzed
to perform classification tasks on light weight 28 x 28 images, which requires no background knowledge, while we apply
the image size as 32 x 32. PathMNIST has 9 classes and three subsets: training, validation, and test. Each has 89,996 data
whose label distribution is near balanced, but unbalanced, and we do not use the validation subset for training. Figure 6
shows several images from the training dataset.

Figure 6. PathMNIST Images.
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(b) CKA, s=10 (c) CKA, s=50(a) Updates for personalization

Body Head Full

Figure 7. (a) Personalization accuracy of FedSup and E-FedSup on CIFAR-100 according to the fine-tuned part by referring to (Oh et al.,
2021) (Other parts are freezed); (b), (c): Centered Kernel Alignments (CKA) similarities of two different global models trained with
FedSup and E-FedSup (Kornblith et al., 2019).

Specification. We describe the detailed specification regarding ‘Big’, ‘Medium’, ‘Small’ models. Deservedly, other
medium-size models also are able to be sampled from the supernet while the trade-off between resources and accuracies
happens (Figure 2).

Table 5. Specification for the child models sampled from the supernet. We report inference time in milliseconds, model size in million (M)
units, and FLOPS in billions (B) units of parameters.

Child Model Big (B) Medium (M) Small (S)

Inference Time 0.37 (ms) 0.20 (ms) 0.06 (ms)
Model Size 0.40 (M) 2.47 (M) 3.08 (M)

FLOPS 2.07 (B) 6.01 (B) 13.36 (B)

F. Additional Experimental Results
F.1. Additional Results on the Common FL Settings

Personalization. Referring to recent personalized FL experimental settings (Oh et al., 2021), we compare the performance
according to the fine-tuned part (Figure 7 (a)). Child models are fine-tuned with five epochs based on the local training data.
In the paper, we thus updates only the head for the personalization unless otherwise mentioned.

CKA Similarities (Kornblith et al., 2019). We vividly compare how the representations of neural networks are changed
through the FedSup and E-FedSup. To be specific, Centered Kernel Alignment (CKA) is leveraged to analyze the features
learned by two architectures trained with FedSup and E-FedSup under different heterogeneous settings, given the same
input testing samples (Figure 7 (b) and (c)). Regardless of the degree of heterogeneity, CKA visualizations show that the
representations of two neural networks trained with FedSup and E-FedSup seem similar during the propagation.
F.1.1. ABLATION STUDIES: MOMENTUM AND LABEL SMOOTHING

Momentum. Table 7 describes the initial and personalzied accuracy according to the momentum. The momentum is not
applied during the fine-tuning of personalization. In most cases, appropriate momentum improves the performance.

Label Smoothing (LS) (Szegedy et al., 2016). Table 8 describes the initial and personalized accuracy according to the LS.
LS is popularly used in the existing weight-sharing methods (Cai et al., 2019; Yu et al., 2020; Wang et al., 2021b), but in our
environment, it rather degrades both initial and personalized performance.

F.1.2. EXPERIMENTS ON MEDICAL DATASET

As Table 9 shows, FedSup and E-FedSup work fairly well on the PathMNIST dataset and have the similar tendency presented
in Table 2.

F.2. Global Accuracies

Unlike the main section, we evaluate a global accuracy of each server model with original test dataset (Table 10, Table 11,
Table 12, Table 13, Table 14, Table 15).
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Table 6. Additional results: initial and personalized accuracy on CIFAR100 under various FL settings with 100 clients. The initial and
personalized accuracy indicate the evaluated performance without fine-tuning and after five fine-tuning epochs for each client, respectively.

FL Settings s=50 s=10

f τ A FedSup E-FedSup FedSup E-FedSup

Initial Personalized Initial Personalized Initial Personalized Initial Personalized

1.0

1
B 42.83±5.05 55.03±4.95 42.46±5.60 55.95±6.03 25.96±6.47 65.75±6.05 26.33±6.37 66.44±6.83

M 41.39±5.33 55.33±4.53 42.15±5.57 55.91±5.57 26.04±6.28 65.59±6.00 26.50±6.70 66.50±7.01

S 39.19±4.77 53.17±4.77 39.78±5.29 54.35±5.88 25.06±5.94 64.81±6.12 25.20±6.00 64.53±6.52

5
B 47.08±5.14 58.15±6.14 46.18±5.68 58.04±5.62 31.24±5.66 69.42±6.69 29.77±6.22 69.47±6.35

M 43.34±4.89 57.01±5.36 44.13±5.51 57.25±6.17 28.81±6.14 69.37±5.39 30.22±6.31 69.38±6.09

S 40.33±5.02 52.78±5.66 40.22±5.28 53.24±5.42 25.01±5.11 66.49±6.36 26.41±5.97 66.30±6.34

Table 7. Initial and personalized accuracy of FedSup and E-FedSup on CIFAR-100 according to the change of the momentum magnitude.
The fine-tuning epochs is 5, f is 0.1, N is 100, and s is 10.

Settings B M S

Alg. m Initial Personalized Initial Personalized Initial Personalized

FedSup
0.0 31.76±7.07 68.92±6.18 31.73±7.54 68.43±6.26 31.24±7.47 67.39±7.28

0.1 32.52±6.45 68.03±5.95 32.09±6.94 68.51±5.96 31.41±6.62 66.92±5.91

0.5 34.54±7.04 69.98±6.89 34.40±6.29 70.83±6.11 33.40±6.25 68.34±6.89

E-FedSup
0.0 32.67±6.80 67.61±6.81 32.69±6.80 67.74±7.05 32.19±6.62 66.30±7.22

0.1 32.78±6.88 67.69±6.19 32.93±7.05 67.33±6.28 32.23±6.64 66.02±6.65

0.5 32.49±6.10 68.50±7.38 32.79±6.30 68.77±6.83 31.96±6.12 66.81±6.88

Table 8. Initial and personalized accuracy of FedSup and E-FedSup on CIFAR-100 with and without label smoothing. The fine-tuning
epochs is 5, f is 0.1, N is 100, and s is 10.

Architecture Size B M S

Architecture LS Initial Personalized Initial Personalized Initial Personalized

FedSup 0.0 34.54±7.04 69.98±6.89 34.40±6.29 70.83±6.11 33.40±6.25 68.34±6.89

0.1 31.44±6.89 68.92±7.48 31.34±7.03 68.56±7.25 30.81±7.28 66.90±7.60

E-FedSup 0.0 32.49±6.10 68.50±7.38 32.79±6.30 68.77±6.83 31.96±6.12 66.81±6.88

0.1 31.89±6.98 68.71±6.45 31.70±6.48 68.35±6.88 30.64±6.91 65.77±6.71

Table 9. Initial and personalized accuracy on PathMNIST (Yang et al., 2021) under various FL settings with 100 clients. We implement
data heterogeneity through Dirichlet distribution (β) (Yurochkin et al., 2019; Hsu et al., 2019; Lin et al., 2020). FedAvg algorithm has
2-3% lower initial and personalzied acc. on average than E-FedSup (Appendix).

FL Settings β = 100.0 β = 1.0

f A FedSup E-FedSup FedSup E-FedSup

Initial Personalized Initial Personalized Initial Personalized Initial Personalized

1.0
B 75.02±4.95 74.67±4.56 73.04±4.39 73.56±4.74 71.70±8.01 79.67±6.34 70.33±8.10 79.17±6.62

M 74.33±4.45 74.33±4.40 74.30±4.47 73.69±4.66 70.19±7.91 78.63±6.84 69.40±8.43 78.48±7.33

S 74.03±4.41 73.12±4.54 70.66±5.50 70.00±5.60 68.59±8.17 77.60±7.17 66.95±8.14 76.38±7.65

0.1
B 74.76±4.23 74.38±4.20 73.91±4.87 73.22±4.95 70.07±8.65 79.30±7.29 69.40±8.05 79.08±6.74

M 73.97±4.90 73.48±4.54 74.08±4.91 73.26±4.54 69.46±9.23 78.80±6.33 69.13±9.07 78.76±6.24

S 73.23±4.84 71.79±4.63 73.88±4.44 72.97±4.94 68.05±8.77 77.37±7.63 67.27±8.97 76.99±7.58

Table 10. Performance of FedSup on CIFAR-10 test dataset with supernet having only dynamic depth. (last accuracy / best accuracy) is
written in order (f = 0.1, N = 100).

Dirichlet Shard

τ m β = 0.01 β = 1.0 s=2 s=10

1
0.0 21.28 / 29.05 71.04 / 71.56 48.53 / 52.70 69.10 / 71.59
0.1 28.96 / 32.08 70.07 / 72.41 52.57 / 55.84 72.47 / 73.24
0.5 23.47 / 31.62 70.89 / 74.13 49.54 / 60.09 75.18 / 76.19

5
0.0 33.59 / 42.82 75.61 / 76.80 54.22 / 62.78 76.57 / 77.79
0.1 39.59 / 42.94 75.05 / 76.02 47.26 / 61.67 77.43 / 78.35
0.5 39.76 / 45.44 75.92 / 77.18 51.94 / 62.30 74.03 / 77.21
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Table 11. Performance of FedSup on CIFAR-10 test dataset with supernet having only dynamic kernel. (last accuracy / best accuracy) is
written in order (f = 0.1, N = 100).

Dirichlet Shard

τ m β = 0.01 β = 1.0 s=2 s=10

1
0.0 20.57 / 31.77 76.69 / 78.88 36.84 / 55.48 77.20 / 78.84
0.1 10.78 / 30.05 77.50 /78.78 54.46 / 58.06 78.29 / 78.29
0.5 18.94 / 34.25 77.83 / 79.99 42.34 / 56.48 78.26 / 80.46

5
0.0 42.79 / 48.76 80.76 / 81.57 35.77 / 62.16 82.57 / 83.06
0.1 18.89 / 44.96 79.85 / 80.88 45.81 / 63.21 80.96 / 82.84
0.5 29.59 / 51.12 81.52 / 82.35 48.79 / 59.92 80.00 / 82.76

Table 12. Performance of FedSup on CIFAR-10 test dataset with supernet having only dynamic width. (last accuracy / best accuracy) is
written in order (f = 0.1, N = 100).

Dirichlet Shard

τ m β = 0.01 β = 1.0 s=2 s=10

1
0.0 24.72 / 31.07 73.67 / 75.61 38.99 / 50.04 75.56 / 76.44
0.1 27.30 / 33.77 74.85 / 76.34 38.95 / 54.33 75.22 / 76.04
0.5 26.04 / 30.24 77.65 / 77.85 33.66 / 50.03 77.89 / 78.12

5
0.0 32.98 / 40.88 78.48 / 79.34 51.84 / 57.85 80.03 / 80.14
0.1 31.39 / 42.89 78.29 / 78.49 43.28 / 56.86 78.48 / 80.10
0.5 32.53 / 43.01 79.56 / 79.82 51.06 / 59.33 77.86 / 80.37

Table 13. Performance of E-FedSup on CIFAR-10 test dataset with supernet having only dynamic depth. (last accuracy / best accuracy) is
written in order (f = 0.1, N = 100).

Dirichlet Shard

τ m β = 0.01 β = 1.0 s=2 s=10

1
0.0 25.76 / 31.89 71.16 / 72.80 37.18 / 53.33 71.38 / 72.59
0.1 25.84 / 35.11 73.17 / 73.21 42.01 / 53.11 73.13 / 73.27
0.5 17.75 / 32.58 75.26 / 75.73 52.95 / 57.48 74.19 / 76.03

5
0.0 34.85 / 41.96 79.28 / 79.59 51.94 / 63.70 80.37 / 81.01
0.1 28.96 / 40.77 80.19 / 80.19 60.48 / 65.21 81.41 / 81.60
0.5 24.34 / 43.42 80.53 / 81.10 40.22 / 62.49 81.51 / 81.78

Table 14. Performance of E-FedSup on CIFAR-10 test dataset with supernet having only dynamic kernel. (last accuracy / best accuracy) is
written in order (f = 0.1, N = 100).

Dirichlet Shard

τ m β = 0.01 β = 1.0 s=2 s=10

1
0.0 22.08 / 31.71 75.79 / 76.97 46.71 / 54.07 74.68 / 77.30
0.1 24.20 / 32.36 76.66 / 76.93 43.80 / 57.80 75.22 / 77.35
0.5 26.75 / 34.95 77.94 / 78.59 32.61 / 54.86 79.28 / 79.28

5
0.0 38.27 / 42.90 79.56 / 80.75 46.11 / 60.77 81.33 / 82.54
0.1 24.08 / 43.91 79.51 / 80.78 54.85 / 61.71 81.16 / 82.32
0.5 31.97 / 50.82 80.74 / 81.93 21.26 / 43.72 82.01 / 82.61
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Table 15. Performance of E-FedSup on CIFAR-10 test dataset with supernet having only dynamic width. (last accuracy / best accuracy) is
written in order (f = 0.1, N = 100).

Dirichlet Shard

τ m β = 0.01 β = 1.0 s=2 s=10

1
0.0 17.70 / 27.93 72.20 / 72.63 39.45 / 48.52 73.93 / 73.93
0.1 20.07 / 30.38 74.64 / 74.73 36.08 / 51.81 72.99 / 74.30
0.5 16.68 / 30.32 77.90 / 77.90 36.63 / 51.81 75.71 / 76.29

5
0.0 32.18 / 38.54 78.42 / 80.15 43.34 / 59.88 79.27 / 80.83
0.1 23.56 / 39.97 78.35 / 78.86 37.13 / 59.98 80.81 / 80.81
0.5 32.80 / 38.32 79.84 / 80.29 51.40 / 59.92 80.35 / 81.16
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F.3. Learning Curve of Global Accuracy

We visualize the learning curves of the networks trained with FedSup and E-FedSup (Figure 8). As Figure 8 shows, FedSup
has slightly better performance than E-FedSup. Here, the cosine learning rate scheduler is used, and the detailed explanations
are noted in Section 4.
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Figure 8. Learning curve of the networks trained with FedSup and E-FedSup. Both networks are trained with s = 50, τ = 5, f =
0.1, N = 100.

F.4. PathMNIST Results

As mentioned in Table 9, FedSup and E-FedSup works better than FedAvg algorithm. Most performances in Table 16 are
lower than the values in Table 16.

Table 16. FedAvg performance on PathMNIST (N = 100, τ = 5).
β = 100.0 β = 1.0

f m Initial Personalized Initial Personalized

1.0 0.0 72.21±4.67 72.09±4.30 69.95±6.94 77.00±6.26

0.1 0.0 71.15±4.43 72.12±4.69 67.87±6.78 76.77±7.34

F.5. Inplace Distillation: Representation Divergence

Table 17 describes the initial and personalzied accuracy according to the inplace distillation. The inplace-distillation is not
applied during the fine-tuning of personalization. In most cases, applying inplace distillation improves the performance.

F.6. FedProx: Weight Divergence

Table 18 describes the initial and personalized accuracy according to the FedProx. The FedProx is not applied during the
fine-tuning of personalization. In most cases, there remains little changes in performance after applying FedProx. Here, we
use the value of hyperparameter λ in FedProx as 0.001.



Supernet Training for Federated Image Classification under System Heterogeneity

Table 17. Initial and personalized accuracy of FedSup on CIFAR-100 with and without inplace distillation. The fine-tuning epochs is 5, f
is 0.1, N is 100, and s is 10.

Architecture Size B M S

Architecture In-Distill Initial Personalized Initial Personalized Initial Personalized

FedSup True 34.54±7.04 69.98±6.89 34.40±6.29 70.83±6.11 33.40±6.25 68.34±6.89

False 33.12±7.19 68.80±7.01 32.54±6.75 68.73±7.11 30.52±7.02 67.24±7.44

Table 18. Initial and personalized accuracy of FedSup on CIFAR-100 with and without FedProx. The fine-tuning epochs is 5, f is 0.1, N is
100, and s is 10.

Architecture Size B M S

Architecture FedProx Initial Personalized Initial Personalized Initial Personalized

FedSup X 34.54±7.04 69.98±6.89 34.40±6.29 70.83±6.11 33.40±6.25 68.34±6.89

O 34.44±6.55 69.91±6.79 34.46±6.31 70.79±6.15 33.49±6.50 68.01±6.77

F.7. Training Time Analysis on Synchronized Training Settings

Our methods are much more efficient in terms of time than the synchronous training of FedAvg-Variant methods. Consider
an example for real-world applications. Since IoT, Edge Device, and Cloud Server have different resource performance, the
time it takes for local training is different for each machine. We assume the local training time for every round in Table 19. If
you need to train with FedAvg-Variant Model, the time it takes to synchronize every round is 30 (sec) + network bandwidth
time. On the other hand, in the case of E-FedSup, the model is distributed in consideration of the resource, S for IoT, M
for Edge Device, and B for Cloud Server, FL can be implemented so that 10 (sec) + network bandwidth time is required.
FedSup can also be implemented much more effectively than FedAvg-variant methods if sub-models are selected well in
local training.

Table 19. Assuming that the local training time of the Big model in the IoT device is 30 seconds, the training time in different machines of
different models is assumed based on this.

B M S

IoT 30(sec) 20(sec) 10(sec)
Edge Device 20(sec) 10(sec) 6(sec)
Cloud Server 10(sec) 5(sec) 3(sec)

F.8. Communication Cost Analysis

Figure 9 is a graph depicting the communication cost required for the neural network to reach 36% accuracy on CIFAR-
100 (N = 100, f = 0.1, s = 10). E-FedSup is the most efficient, and FedSup has the same communication cost as FedAvg
for each round, but the performance converges faster.

F.9. Number of Sampled Architectures for Training in FedSup

We study the number of sampled architectures M per training iterations. It is important because larger n leads to more
training time. We train the models with n equal to 1,2,3, or 4 where the sandwich rule is not applied when n ≤ 2.
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Figure 9. Comparison of communication costs with FedAvg, FedSup, and E-FedSup. The communication cost paid until reaching the
same accuracy is compared.

Table 20. Performance of FedSup on CIFAR-10 test dataset with supernet having dynamic operations on depth, kernel, and width.
(accuracy on Dirichlet distribution having β = 0.01 / accuracy on Dirichlet distribution having β = 1.0) is written in order (f =
0.1, N = 100, τ = 5,m = 0.5).

M 1 2 3 4

W/ Sandwich Rule - - 45.44 / 77.79 45.12 / 76.78

W/O Sandwich Rule 43.64 / 77.68 41.58 / 77.27 43.08 / 76.61 43.83 / 77.27


