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Abstract
Edge devices provide inference on predictive
tasks to many end-users. However, deploying neu-
ral networks that achieve state-of-the-art accuracy
on edge is infeasible due to resource constraints.
Nevertheless, cloud-only processing is also prob-
lematic since uploading large amounts of data
imposes severe communication bottlenecks. We
propose a novel end-to-end hybrid learning frame-
work that allows the edge to selectively query
only those hard examples that the cloud classifies
correctly. It trains edge, cloud predictors, and
routing to maximize accuracy while minimizing
the latency. Training a hybrid learner is difficult
since we lack annotations of hard edge-examples.
We introduce a novel proxy supervision in this
context and show that our method adapts near
optimally across different latency regimes. On
the ImageNet dataset, our proposed method
deployed on a micro-controller unit exhibits 25%
reduction in latency compared to cloud-only
processing while suffering no excess loss.

1. Introduction
Deep Neural Networks (DNNs) achieve state-of-the-art
(SOTA) performance on challenging tasks such as image
recognition (Tan & Le, 2019), and machine translation (Wu
et al., 2016). However, SOTA performance is only achiev-
able on the cloud since edge devices impose severe con-
straints on model storage, energy consumption, and infer-
ence latency. Thus, on-device solutions lead to significant
performance degradation. Nevertheless, cloud-only pro-
cessing is also problematic. Uploading large amounts of
data through wireless services imposes bottlenecks due to
communication latency and significant battery utilization.

Our proposed hybrid method, illustrated schematically in
Fig. 1, consists of an edge device equipped with a base
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Figure 1. HYBRID MODEL. Cheap base (b) & routing models (r)
run on a micro-controller; Expensive global model (g) runs on a
cloud. r uses x and features of b to decide if g is evaluated or not.

predictor, b, and a router, r, which selectively queries the
cloud-based global model, g, on examples that are hard to
predict with the edge-devices capabilities. Our objective is
to maximize base (edge) utilization while achieving global
(cloud) performance. To build intuition on the novel aspects
of our approach, let us examine the problem of large-scale
classification on a Micro-Controller Unit (MCU).

ImageNet-Scale on an MCU. Table 1 displays accuracy and
processing latencies on a typical edge (MCU) model and a
cloud model (see Appendix §A.2). The cloud has GPUs and
is 10x faster than an MCU. As a result, to reduce processing
latency, one should transfer all the data to the cloud. How-
ever, data transfer to the cloud takes about 2s—about 100×
the processing time on a GPU—and thus, to reduce commu-
nication, one should maximize MCU utilization for classifi-
cation. The argument from an energy utilization viewpoint is
similar; it costs 20× more for transmitting than processing.

Hybrid Learning Objective. To minimize latency at a
target accuracy, a low-complexity edge must learn not only
to predict hard-to-locally-classify examples, but also to pre-
dict whether the cloud model would misclassify the example.
Equivalently stated as a coverage (fraction of local predic-
tions) maximization problem under accuracy constraint.

Table 1. Device & Model Characteristics: Edge (STM32F746
MCU), Cloud (V100 GPU). It takes 2000ms to communicate an
ImageNet image from the edge to the cloud (see Appendix A.2)

.

Device
Device

Characteristics
Model

Performance

Memory Storage Accuracy Size Latency

MCU 320KB 1MB 51.1% 0.6MB 200ms
GPU 16GB 1TB 79.9% 9.1MB 25ms
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Table 2. Comparing features of our proposal against baseline. E.-
to-E. stands for ‘End-to-End’, and Arch. for ‘Architecture’.

Method
Low

Latency
Deploy.
on Edge

E.-to-E.
Training

Arch.
Search

High
Accuracy

On-Device ✓ ✓ - ✓ ✗
On-Cloud ✗ ✗ - ✓ ✓

Split-Comp. ✗ ✗ ✓ ✗ ✗
Dynamic. ✓ ✓ ✗ ✗ ✗

Hybrid ✓ ✓ ✓ ✓ ✓

Efficient Edge Solutions. Prior works on efficient architec-
tures under latency constraints (Cai et al., 2020; Lin et al.,
2020; Howard et al., 2019) seek edge-only solutions that
fit into an MCU. While these methods are complementary
to our work, we point out that the accuracy of our model
on the MCU is about 50%. This is so low that regardless
of which of these methods is used, it is unlikely to bridge
the large accuracy gap. Thus hybrid solutions are required.

Split-Computation and Early Exit Methods. Systems re-
searchers (Kang et al., 2017; Odema et al., 2021) proposed
storing and executing a part of the large cloud-DNN on edge,
and when possible predict locally (early exit), thereby reduc-
ing latency. Since MCUs are too small, only a tiny part of the
large DNN can be stored/executed locally. Besides, initial
DNN features are large, thus providing little communication
gains over image transmission. In addition, the low-early-
exit accuracy requires a large number of cloud queries (see
§A.6 for details). The resulting trade-off between accuracy
and latency is too weak to serve as a baseline (see Fig. 2).

Dynamic Networks. (Park et al., 2015; Bolukbasi et al.,
2017; Teerapittayanon et al., 2017) designed dynamic DNNs
with more budget for hard instances, disregarding the
severely resource-constrained setting. In contrast, we over-
whelmingly reduce resource usage to deploy models on edge
with cloud accuracy. It necessitates an end-to-end optimiza-
tion of routing, base, and global. Prior works optimize these
in a decoupled manner. For instance, dynamic architectures
use entropy thresholding for routing. Such a router is locally
myopic as it does not account for cloud predictions. Fig. 2
shows that a carefully designed router outperforms dynamic
networks. See Appendix §A.5 for detailed comparison.

1.1. Proposed Hybrid Solution
We propose a novel end-to-end framework for learning
hybrid models that incorporate edge-device specifications,
cloud, and latency constraints. Table 2 compares hybrid
design with prior works along various dimensions.

Novel Proxy Supervision. Training routing models is dif-
ficult because we do not apriori know hard-to-classify edge-
examples. More importantly, we only benefit from sending
hard examples that the cloud correctly predicts. Consider
an instance-label pair (x, y) with three typical possibilities:
• Edge and Cloud are both accurate, b(x) = g(x) = y;
• Edge and Cloud are both inaccurate, b(x) = g(x) ̸= y;

• Edge is inaccurate but Cloud is accurate b(x) ̸= g(x) = y.
Our goal is to transmit only those examples satisfying the
last condition. It reduces latency by ceasing data transfers
when cloud predictions are bound to be incorrect. However,
the limited capacity of the router (deployed on the MCU)
limits how well one can discern which of these cases are
true. As such, the routing would benefit from supervision,
and we introduce a novel proxy supervision to learn routing
models while accounting for the base and global predictions.

Figure 2. Image recognition on the ImagetNet dataset: Accuracy
vs Energy and Latency plot. This clearly shows that the hybrid
design pareto dominates on-device as well as other baselines while
getting significantly closer to the upper-bound in hybrid design.
Highlights of Proposed Hybrid Approach. Fig. 2 displays
the performance of various strategies for the situation in
Table 1. Here the purple ‘Hybrid’ line depicts the accuracies
achievable by our proposal. The green line shows hybrid
accuracies achieved by dynamic neural networks (Bolukbasi
et al., 2017; Nan & Saligrama, 2017; Li et al., 2021),
including base-model entropy or margin-based thresholding
techniques. We attribute our gains to router proxy super-
vision and end-to-end hybrid system training. Additionally,
improvements in on-device accuracy are possible (blue),
but with relatively small gains, and naı̈ve split computation
(red) have poor performance due to edge-device limitations.
Finally, we derive an upper bound (Appendix §A.2) on
attainable accuracy, as indicated by the dashed brown line.

Fig.2 shows that hybrid model mirrors the upper bound and
achieves global accuracy with a 25% reduction in latency.

Contributions
• We propose a hybrid framework wherein an edge, to opti-

mize accuracy at user-specified latency, selectively queries
only hard examples the cloud can correctly classify.

• We propose novel proxy supervision to train router. Our
method adapts near optimally across different latencies.

• Preliminary experiments show that the hybrid design
reduces inference latency and energy consumption.

• We provide pseudo-code for training hybrid models.
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2. Method
Notation. Let X be a feature space and Y a set of labels. A
hybrid design is composed of the following three models:
• A base model b : X → Y, deployed on an edge device.
• A global model g : X → Y deployed on the cloud.
• A routing model r : X → {0, 1} deployed on the edge.
These are soft classifiers, outputting |Y|-dimensional scores
{by} and {gy}, and two scores r0 and r1 for router. Hard
output for the base is b(x) = argmaxy by(x), and similarly
for g. r is a 2-layer DNN with input by(x) and has a scalar
tuning parameter t, and assigns x to global if r1 > r0+t, i.e.

r(x; t) = 1{r1(x) > t+ r0(x)}.
Varying t (Alg. 2) trades-off accuracy and resource usage,
and allows us to avoid retraining r at each resource level by
locally tuning a router. By default t = 0. The hybrid predic-
tion for an instance x is ŷ(x) := (1−r(x))b(x)+r(x)g(x).

Evaluation Metrics. We refer to the overall accuracy of the
hybrid predictions as hybrid accuracy, defined as

A(r, b, g) = P(ŷ(X) = Y )

= P(r(X) = 0, b(X) = Y ) + P(r(X) = 1, g(X) = Y ).

This accuracy is traded-off with the coverage of hybrid
models, which is the fraction of instances processed by the
cheap base model only, i.e. C(r, b, g) := P(r(X) = 0).

Modeling Resource Usage. Let α denote an architecture, and
say that f ∈ α if the function f is realizable by α. Resource
cost of f is denoted R(α). In our hybrid design, the base
and router are always executed. So the mean resource usage
of the hybrid model (r, b, g) with b ∈ αb and g ∈ αg is
R(r, b, g) := Rr +R(αb) + (1− C(r, b, g))R(αg), (1)

whereRr is a small fixed cost of executing r.

Eq. 1 can model resources such as energy or total FLOPs.
To model inference latency, we take R(αb) to be the base
inference latency on edge, andR(αg) to be the sum of the
computational latency of g on the cloud and the commu-
nication latency of sending examples to the cloud. In Table
1, these numbers would be 200ms and 2025ms respectively.
Thus, resource constraint reduces to a coverage constraint.

Algorithm 1 Training Hybrid Models
1: Input: Training data D = {(xi, yi)}Ni=1

2: Hyper-parameters: λr, Number of epochs E
3: Initialize: random r0, pre-trained b0, g0.
4: for e = 1 to E do
5: Randomly Shuffle D
6: Generate oracle dataset Do;(b,g) using Eq. 4
7: re = argminr Lrouting(r, b

e−1, ge−1)
8: ge = argming Lglobal(r

e, be−1, g)
9: be = argminb Lbase(r

e, b, ge)
10: Return : (rE , bE , gE)

2.1. Learning Hybrid Models

Learning objective to train hybrid models with base and
global architectures αb, αg, with Cϱ coverage level is

max
r,b∈αb,g∈αg

A(r, b, g) s.t. C(r, b, g) ≤ Cϱ. (2)

We solve (2) via an ERM. We discuss several design issues
below and summarise the overall scheme in Algorithm 1.

Alternating optimisation. Problem (2) has a cyclical non-
convexity. A given r affects the optimal b and g (since these
must adapt to the regions assigned by r), and vice-versa. We
approach this issue by alternating optimisation. First, we
train g and b with standard methods. Then, we learn a router
r under a coverage penalty. The resulting r feeds back into
the loss functions of b and g, and these get retrained.

Learning Routers via Proxy Supervision. Given a fixed
pair of base and global (b, g), problem (2) reduces to

max
r

E[(1− r(X))1{b(X) = Y }+ r(X)1{g(X) = Y }]

s.t. E[r(X)] ≤ Cϱ, (3)

While a naı̈ve idea is to relax r and pursue ERM, we instead
reformulate the problem. Observe that (3) demands that

r(X) =

{
0 if b(X) = Y, g(X) ̸= Y

1 if b(X) ̸= Y, g(X) = Y .

Further, while b(X) = g(X) is not differentiated, coverage
constraint promotes r(X) = 0. Thus, the program can be
viewed as a supervised learning to fit the routing oracle, i.e.

o(x; b, g) = 1{b(x) ̸= g(x) = y}. (4)
Indeed, o is the ideal routing without the coverage constraint.
Given (b, g) and dataset D = {(xi, yi)}, we produce the
oracle dataset Do;(b,g) := {(xi, o(xi; b, g))} to supervise
the router r. This allows us to use the standard learning tools
for practically learning good binary functions, thus gaining
over approaches that directly relax the objective of (3). Note
that the oracle o does not respect the coverage constraint. We
handle this issue indirectly by imposing a coverage penalty.

Focusing competency and loss functions. We bias b to be
more accurate on the region r−1({0}), and g on r−1({1}).
Similarly, for the router r, it is more important to match
o(x) = 1 region, not captured accurately by the base.

Routing Loss consists of two terms, traded off by a hyper-
parameter λr. The first penalises coverage deviation from
a given target (cov), and the second promotes alignment
with o and is biased by the weight Wr(x) = 1 + 2o(x) to
preferentially fit o−1({1}). Let ℓ be cross entropy loss and
(·)+ be the ReLU function.

Lrouting(r; o) = λr

(
cov −

(
1−

1

N

∑
x

(r1(x)− r0(x))+
))

+

+
∑
x

Wr(x)ℓ(o(x), r(x)). (5)



Submission and Formatting Instructions for ICML 2021

Base Loss and Global Loss are weighted variants of the stan-
dard classification loss, biased by the appropriate weights
to emphasise the regions assigned to either model by the
routing network - Wb(x) = 2−r(x) and Wg(x) = 1+r(x).
Lbase(x) =

∑
Wb(x)ℓ(y, b(x));Lglobal(x) =

∑
Wg(x)ℓ(y, g(x)).

3. Hybrid Models for Resource-Limited Edge
In this section, we train hybrid models using the Algo-
rithm 1. Empirical evaluations demonstrate that the hybrid
models achieve near SOTA accuracy with 30 − 70% less
communication. In appendix, we describe ablations.

Experimental Setup. We focus on the ImageNet (Rus-
sakovsky et al., 2015) dataset. We use publicly available
pre-trained baselines. See §A.1, §A.4.2, §A.4.1 for details.

We use the largest model of the (Cai et al., 2020) as the
global, and refer it as MASS-600M (which needs 600M
MACs for evaluation). This model has an accuracy of 80%,
and a computational latency of about 25ms on a V100 GPU.

Unless explicitly stated, we create hybrid models by training
routing and base as training the global model is a compu-
tationally expensive exercise. We train hybrid models to
achieve oracle labeling coverage. Post-training, we tune the
threshold t to generate r with varying coverage (Alg. 2).

Table 3. Hybrid models on STM32F746 MCU: Accuracy achieved
by different methods at various latency constraints.

Accuracy (%) v/s Resource Usage

Latency (ms) 200 600 1000 1400 1600 2000
Energy (mJ) 11 53 96 140 161 216

On-Cloud - - - - - 79.9
On-Device 51.1 - 60.9 63.5 - -

Entropy - 59.9 67.4 74.7 76.93 -
Hybrid - 62.3 71.2 77.9 79.5 -

Upper-Bound - 62.8 74.7 79.9 79.9 -

Baseline Algorithms. We investigated prior methods (Kang
et al., 2017; Nan & Saligrama, 2017; Bolukbasi et al.,
2017; Li et al., 2021; Teerapittayanon et al., 2017), and
the entropy thresholding, which we report here, dominates
these methods across all datasets. This fact has also been
observed in other works (Gangrade et al., 2021; Geifman &
El-Yaniv, 2019). It is not surprising since these prior works
do not include proxy supervision (2nd term in Eq. 5), and
the routing model does not get instance-level supervision.

Resource constrained MCU. Recall from Sec. 1 that we
deployed an ImageNet classifier on a tiny STM32F746
MCU (320KB SRAM, 1MB Flash), the same setting as
MCUNets (Lin et al., 2020). Using their TFLite model
(12.79M MACs, 197ms latency, 51.1% accuracy) as base,
we create a hybrid model by adding MASS-600 as the global
model. We provide additional details in the Appendix §A.2.

Figure 2 and Table 3 shows accuracy, latency, and energy
of the hybrid approach against baselines. Deploying hybrid
model on an MCU results in following benefits:
• Pareto Dominance over on-device. Hybrid model gains
10% accuracy over the on-device model with similar latency.
It achieves the best on-device accuracy with half the latency.
• Pareto Dominance over other baselines. Hybrid model
achieves 5% higher accuracy than the dynamic networks
that use the entropy thresholding baseline (see Figure 2). In
passing we recall from our earlier discussion that entropy
thresholding dominates prior methods in this context.
• Significant latency reduction to achieve SOTA accuracy.
The hybrid model achieves near SoTA accuracy with 25%
reduction in latency and energy consumption.
• MCU Implementation. We deployed base and router on
the MCU with negligible (∼ 2%) slowdown (see §A.7).
Table 4. Results for hybrid models with base at various coverage
levels. MASS-600 model achieving ≈ 80% Top1 accuracy is used
as global model. Base model belongs to MBV3 space.

Base
MACs

Base
Acc.(%) Method Acc. (%) at Cov.

90% 80% 70%

48M 67.6
Entropy 70.7 73.3 74.9
Hybrid 71.6 74.6 76.8

143M 73.3
Entropy 75.1 76.8 77.6
Hybrid 75.9 77.8 79.0

215M 75.7
Entropy 77.1 78.3 78.9
Hybrid 77.6 79.0 79.6

Resource Constrained Mobile Device. To show that hybrid
model benefits extend beyond the MCUs, we trained hybrid
models for various mobile device constraints. We choose
the popular MBV3 (Howard et al., 2019) architectures as the
base since they have been heavily deployed on mobile de-
vices with resource constraints such as storage and compute.
We create hybrid models using the following base models in
the MBV3 family: MBV3-48 (2.54M params, 48M MACs),
MBV3-143 (4M params, 143M MACs), and MBV3-215
(5.48M params, 215M MACs). We use MASS-600 as the
global and operate the base at a fixed coverage level.

Table 4 shows the hybrid accuracy at three coverage levels:
90%, 80% and 70%. Hybrid models result in:
• Up to 70% latency reduction to achieve SOTA accuracy.
Hybrid model with MBV3-215M base achieves 79.59%
(near SOTA) accuracy with 70% coverage.
• Hybrid models outperform the entropy thresholding. Hy-
brid model with MBV3-48M achieves nearly 2% higher
accuracy than entropy thresholding baseline.
• Hybrid model with a smaller base achieves performance
of larger models at various coverages. Using MBV3-48M
base, the hybrid model exceeds the accuracy of MBV3-
143M at 80% coverage. Similarly, it exceeds the accuracy
of MBV3-215M at 70% coverage.
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A. Appendix
A.1. Dataset Details

Imagenet (Russakovsky et al., 2015). This is the popular image classification dataset consisting of 1000 classes. It has
nearly 1.28M training and 150K validation images. A typical image in this dataset has 224× 224× 3 pixels. We follow
standard data augmentation (mirroring, resize and crop to shape 224×224) for training and single crop for testing. Following
earlier works (Howard et al., 2019; Cai et al., 2020), we report the results on the validation set.

CIFAR-100 (Krizhevsky, 2009). This is a 100 way image classification dataset consisting of images with 32 × 32 × 3
pixels. It has 50K train and 10K test images. We follow standard data augmentation (standard gaussian normaliza-
tion/mirroring/shifting) used in earlier works (He et al., 2016; Huang et al., 2017). In addition, we use the cut-out (DeVries
& Taylor, 2017) with the standard window size of 8.

IMDb (Maas et al., 2011). This is a sentiment classification dataset with two classes (positive and negative). It consists of
raw text of movie reviews. There are 25K train and 25K test data points. We borrow text parsers and tokenizers from the
models available in the HuggingFace1 library.

A.2. Illustrative Example Details

Edge and Cloud devices. We use a V100 GPU as the cloud device. It has a 16GB VRAM and the server associated with
this GPU has 1TB storage. We use STM32F746 2, an ARM Cortex-M7 MCU as the edge device. It has 320KB SRAM and
1MB Flash storage.

On-Cloud Baseline. We use the MASS-600 (Cai et al., 2020) as the global model in this experiment. It achieves 79.9%
Top1 accuracy on the Imagenet dataset. This model has a computational footprint of 595M MACs. As per our benchmarking,
the inference latency of this model on a V100 GPU is 25ms.

On-Device Baselines. (Lin et al., 2020) have explored deploying tiny MCUNet models on the STM32F746 MCU. We
borrowed their pre-trained MCUNet models from their github repository 3 4. There are three different models with varying
inference latencies and accuracies, namely: (a) model-A ( 12M MACs, 0.6M parameters, 200ms latency, 51.1% accuracy),
(b) model-B (81M MACs, 0.74M parameters, 1075ms latency, 60.9% accuracy), and (c) model-C (170M MACs, 1.4M
parameters, 1400ms latency, 63.5% accuracy). We use the smalled model, i.e., model-A as the base model in training the
hybrid model. This model has the least latency as well as the least accuracy among the three models. Note that this model
has the input resolution of 96× 96× 3 and as a result the input size becomes nearly 28KB.

Energy Profile Base Model Execution and Communication Cost. We assume that the MCU device operates at 200MHz
clock speed and is connected to a 3.6V power supply. It has an active mode current characteristics of 72µA per MHz.
Thus, it consumes = 3.6 × 72 × 200 = 51.84 mW (i.e. mili Joules per second) energy in active mode. As a result, the
energy consumed by the base model (200ms latency) on this edge device is = 51.84× 0.2 = 10.368 mili Joules. Similar
calculation yield the energy consumption the on-device models: model-B (60mJ) and model-C (80mJ).

We use the NB-IoT (Chen et al., 2017) communication protocol with 110kbps transmission rate and a transmission current
characteristics of 30mA. Thus, it consumes = 30× 3.6 = 108 mili Joules per second in transmission mode. Let us calculate
the time taken to transfer the input image from the base model on the edge device to the global model on cloud. The
base model input has size 28KB and the transmission rate is 110kbps. Thus, it takes = 28∗8

110 ≈ 2 seconds to transfer this
image from the edge device to the cloud. As a result, the energy consumed by the edge device in transmitting this image is
= 108 ∗ 2 = 216mJ.

Split-Computation Baseline. We use this term to refer methods (Kang et al., 2017; Teerapittayanon et al., 2017) wherein
the initial part of the global model executes on-device while the remaining executes on-cloud. The initial network allows for
an early exit classifier for easy examples. Split into early layers results in high communication cost but split in later layers
results in higher base computation latency, making it ineffective in the edge-cloud setup.

We trained the BranchyNet (Teerapittayanon et al., 2017) method to represent this baseline. We create an exit classifier after

1https://huggingface.co
2https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html
3https://github.com/mit-han-lab/tinyml/tree/master/mcunet
4https://github.com/rouyunpan/mcunet



Submission and Formatting Instructions for ICML 2021

the first MBConv layer in the global model and train such an exit classifier. This split results in spending 48M MACs in the
base computation and then features are transferred to the global model in case the exit classifier sends the example to further
layers. Note that in this case the feature cost is more than twice the input size and thus, this baseline suffers much worse
from the communication delay than others. This method can always ditch the processing on the edge and send all examples
to the cloud, thus achieving global accuracy with same latency and energy consumption as the on-cloud solution.

Dynamic Neural Networks. This baseline refers to various recent methods (Nan & Saligrama, 2017; Bolukbasi et al., 2017;
Li et al., 2021) that propose dynamic computation and includes base-model based entropy or margin threshoding. For a fair
comparison to the proposed hybrid method, we use entropy thresholding on the base model to represent this baseline.

Hybrid Model training. We use the MCUNet model-A as the base model and the MASS-600 as the global model. We train
the hybrid models using these base and global architecture pairs. Let c be the coverage of the base model, i.e. c fraction of
examples are inferred on the base and 1− c fraction of examples are sent to the global model. At c = 100%, we obtain the
on-device performance. Although hybrid models trivially achieve on-cloud performance by sending all examples to the
global model, i.e. at c = 0%, our hybrid training procedure obtains the on-cloud solution at with less communication. Let ℓb
denote the inference latency on the edge (in this case it is 200ms), while ℓg denote the inference latency on the cloud (in this
case it is the sum of communication cost and inference latency of the global model, i.e. 2000 + 25 = 2025ms). Thus, we
can write the inference latency of the hybrid model at a coverage c as follows:

Hybrid Latency@c = ℓb + (1− c)ℓg

Similarly, using we can compute the energy consumption for the hybrid inference as follows:
Hybrid Energy@c = µb + (1− c)µg

where µb and µg are the edge device energy consumption for on-device and on-cloud inference. In this case, µb = 10.37mJ
and µg = 216mJ.

Upper Bound. Let us develop an upper-bound on achievable accuracy as a function of latency. Recall from Table 1 that
communication latency dominates processing time. Also recall the notion of coverage, c, which denotes the fraction of
examples locally processed. Note that there is a one-to-one correspondence between coverage and latency of the hybrid
system. Suppose αb, αg denotes base accuracy and cloud accuracy. The base predictor predicts (1−αb) fraction incorrectly,
and among these suppose we make the reasonable assumption that the router is agnostic to which of those are correctly
classified at the cloud. Then an upper bound on the target hybrid accuracy is given by the expression:

Hybrid Acc@c ≤ min

{
αg − αb

1− αb
∗ (1− c) + αb, αg

}
Notice that c = 0, c = 1, we recover global and base accuracies, and c = αb, is the cut-off point, namely cloud accuracy is
achieved at the latency associated with the coverage c.

A.3. Algorithms

In addition, we frequently tune a given router r and base and global models to locally trade-off resource usage levels and
accuracy (which saves on retraining on each different value of ϱ that one may be interested in. This is realised by finding a
value t adjusted to the constraint, and using the routing function r(x; t) = 1{ro(x) ≥ r1(x) + t}. Such a t may be found as
in Algorithm 2.

Algorithm 2 Tuning Routing Model
1: Input: Validation data V = {(xj , yj)}Mj=1, target resource level ϱ, Hybrid model (r, b, g).
2: T ← {r0(x)− r1(x) : x ∈ V }.
3: c∗ ← min c : Rr +R(αb) + (1− c)Rg ≤ ϱ.
4: t∗ ← c∗th quantile of T .
5: Return: t∗.

A.4. Implementation Details

A.4.1. HYPER-PARAMETER SETTINGS.

We use SGD with momentum as the default optimizer in all our experiments. We initialize our hybrid models from the
corresponding pre-trained models and use a learning rate of 1e− 4 for learning base and global models. We use a learning
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rate of 1e − 2 for learning the routing network. We decay the learning rate using a cosine learning rate scheduler. As
recommended in the earlier works, we use a weight decay of 1e− 5. We set the number of epochs to be 50. We use a batch
size of 256 in our experiments.

A.4.2. MODEL DETAILS

Entropy Thresholding Baseline. As per recommendation in the literature (Teerapittayanon et al., 2017; Gangrade et al.,
2021) we compute the entropy H of the base prediction probability distribution by(x). This baseline allows access to a
tunable threshold t. Predictions with entropy below this threshold are kept with the base model while the predictions with
entropy above this threshold are sent to the cloud model. We use similar tuning as Algorithm 2 to trade-off resource usage.

Routing Model. Our routing model uses predictions from the base model and creates a 2-layer neural network from these
predictions. We create meta features from these predictions to reduce the complexity of the network, by (a) adding entropy
as a feature, (b) and adding correlations between top 10 predictions, resulting in a 101 dimensional input feature vector.
The feed-forward network has 256 neurons in the first and 64 neurons in the second layer. The final layer outputs a two
dimensional score leading to binary prediction for the routing r. Note that the routing network described in this manner
contributes to less than 2% compute budget of the base model and hence its compute cost is negligible in comparison to the
base and global models.

MBV3. We have used the MobileNetV3 (Howard et al., 2019) models as base in the hybrid models designed for mobile
devices (see Sec. 3 ). We borrowed pre-trained models from publicly available implementation 5. Table 5 lists the
performance and compute characteristics of these borrowed models.

Table 5. MBV3 models in our setup.
Top1 Accuracy #Params #MACs

MBV3-48 67.613 2.54M 48.3M
MBV3-143 73.3 3.99M 143.4M
MBV3-112 71.7 - 112M
MBV3-91 70.4 - 91M
MBV3-215 75.721 5.48M 215.3M

MASS. We borrowed the pre-trained (Cai et al., 2020) models from the official public repository 6. Table 6 lists the accuracy,
number of parameters and MACs for these models. We note that these models have been specialized by the authors with
fine-tuning to achieve the reported performance.

Table 6. Once-for-All Pre-trained models in our setup.
Top1 Accuracy #Params #MACs

MASS-600 (’flops@595M top1@80.0 finetune@75’) 79.9 9.1M 595M
MASS-482 (’flops@482M top1@79.6 finetune@75’) 79.6 9.1M 482M
MASS-389 (’flops@389M top1@79.1 finetune@75’) 79.1 8.4M 389M

MASS-240 (’LG-G8 lat@24ms top1@76.4 finetune@25’) 76.4 5.8M 230M
MASS-151 (’LG-G8 lat@16ms top1@74.7 finetune@25’) 74.6 5.8M 151M
MASS-101 (’note8 lat@31ms top1@72.8 finetune@25’) 72.8 4.6M 101M
MASS-67 (’note8 lat@22ms top1@70.4 finetune@25’) 70.4 4.3M 67M

A.5. Difference between AppealNet and our Hybrid design.

Below we highlight main difference between AppealNet ((Li et al., 2021)) and our proposal.

• AppealNet formulation does not explicitly model any coverage constraint that enables the base model to operate at a
tunable coverage level. In contrast, we explicitly model a coverage penalty.

5https://github.com/rwightman/pytorch-image-models
6https://github.com/mit-han-lab/once-for-all
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• Jointly learning the routing without any supervision is a hard problem. Instead, we relax this formulation by introducing
the routing oracle that specializes in a routing network for a given base and global pair. With this oracle, the task of
learning routing reduces to a binary classification problem with the routing labels obtained from the oracle. This also
decouples the routing task from the base and global entanglement.

• AppealNet does not use supervision like us, and as such such strategies ultimately resemble thresholding on examples
whose anticipated loss exceeds some threshold. To see this consider Algo. 1 line 7 (Li et al., 2021) for m examples.
Taking the derivative wrt q yields β 1

m

∑
x

1
1−q(0|x) =

1
m

∑
x ℓ(f1(x), y)− ℓ(f0(x), y). The RHS is the excess loss. For

small values of q(0|x), we can approximate the LHS to yield: β 1
m

∑
x(1 + q(0|x)) ≈ Excess-Loss. Simplifying we get:

1
m

∑
x q(0|x) ≈

1
β Excess-Loss − 1. This expression suggests a relaxed objective that we should enforce the fact that

examples sent to the cloud is broadly proportional to excess loss, and as such represents very weak supervision.
• In addition, we propose a neural architecture search that finds a pair of base and global architectures that optimise the

hybrid accuracy at any given combined resource usage.
• Empirically, AppealNet does not have any evaluations for the Imagenet scale dataset. The closest comparison we can find

is with the Tiny-Imagenet dataset (one-tenth of the size of the Imagenet). While we cannot compare the two directly, since
we solve a much harder problem than Tiny-Imagenet, we can make the following observations. At 70% coverage level,
for AppealNet, the minimum performance difference between the hybrid model and the global model is ≈ 1.2% (see
AppealNet, Fig. 5(d)), while our closest to the global in case of the MobileNet baseline is 0.3% (see our paper Table 1,
row 3). Note that AppealNet performance will go down on Imagenet in comparison to Tiny-Imagenet due to the hardness
of the problem.

A.6. Difference between LENS and our Hybrid design.

Although below we highlight main difference between LENS ((Odema et al., 2021)) and our proposal, we emphasize that
LENS studies the edge-cloud interactions purely from systems perspective and as such does not dwelve into the learning
aspects and the trade-off required in routing the inputs in severely resource constrained edge devices as well as their limited
communication capabilities.

• (A) Our Objective: On large-scale tasks (such as ImageNet), for the given WiFi rate, our goal is to realize the accuracy of
an arbitrarily large DNN model (deployable on the cloud) by means of a hybrid method deployed on edge. We selectively
route difficult inputs on the edge to the cloud, maintaining top-accuracy, while consuming minimal energy/latency.

Our Edge. Our edge device only has CPU or MCU compute capabilities (see Sec. 3). In addition, these edge device
are severely resouce constrained, namely they only allow low powered transmission as well as low transmission rates.
These constraints limits the model that can be deployed on the edge to be very low footprint. For instance, our illustrative
example only has 110Kbps transmission rate (see Sec. A.2).

This together with our desired accuracy places stringent constraints on edge to crisply learn hard-to-predict examples, and
characterizes fundamental limits of hybrid ML.

• (B) Circuit/Systems Prior Works (ex: LENS or Neurosurgeon). Their goal for a given dataset is to split/partition
computation of a (suitably optimized) DNN to minimize latency/energy in response to changing wireless conditions.

LENS Edge. (Odema et al., 2021) has GPU compute capabilities on the edge device. As a result, even large DNNs can be
comfortably executed on this device without a significant delay as compared to the on-cloud solution. In addition, their
edge device leverage high transmission rate (up to 25Mbps). As a result, LENS explores a different setting agnostic to
data. They leverage low transmission latency to compensate the difference in edge and cloud GPU times, motivating
partitioning.

• (C) Objective (B) is suboptimal for objective (A). (B) requires the same network model on the edge and the cloud, which
artificially constrains DNNs to fit into edge’s specifications, while hoping to realize cloud-server gains on the partitioned
parts. For large-scale tasks (ImageNet), high-accuracy can only be achieved by large DNNs (even with NAS optimization
(Cai et al., 2020)), which are not edge-deployable, and using different architectures on edge/cloud is fundamental in (A).

• (D) LENS baselines are too weak. Direct comparisons are difficult due to different system choices(see (B)). Still we can
note that LENS:

– reports results on small CIFAR-10 dataset, which is not representative
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Figure 3. Image recognition on the ImagetNet dataset: Accuracy vs Energy and Latency plot. This clearly shows that the hybrid design
pareto dominates on-device as well as other baselines while getting significantly closer to the upper-bound in hybrid design.

– uses VGG-16 based architecture(large DNN)—typically not edge-deployable
– with all-cloud processing, achieves 82%, significantly lower than VGG16 published results (93.56% see https:
//github.com/geifmany/cifar-vgg);

– with optimal NAS+partitioning gets 77% under 25% energy reduction (see Fig. 6)

In contrast, for CIFAR-10 we trained standard (tiny) models (see MCUNet model described as On-Device baseline in
Sec. A.2) deployable on MCUs.

– MCUNet (Lin et al., 2020) is deployable on the resource constrained MCUs.
– VGG-16 on CPU has 280X worse latency w.r.t. our model
– With all-edge processing we get 91.7% accuracy consuming 11mJ, and 85% under 25% energy reduction.

This shows using same model on cloud/edge is suboptimal (see (C)).

• (E) Large-scale Task: LENS code is unavailable; Direct Evaluation is difficult. LENS employs GP-based bayesian
optimization to NAS, which is known to produce poor results (see (White et al., 2021)), which is also evident from (D).
Due to lack of publicly avaiable codebase, we created a similar baseline to see the performance gap between our proposal
and LENS on the illustrative example in the introduction (see Figure 2). We optimized NAS+partitioning method by
optimizing over OFA models/architectures (Cai et al., 2020). These architectures range from small to large models across
diverse target accuracies. Hybrid methods overwhelmingly dominate NAS+partitioning methods (pink in Figure 3), again
reinforcing our point (C).

A.7. MCUNet Router Deployment Overhead

We deploy both MCUNet and our base with routing model on the MCU using the TensorFlow Lite for Microcontrollers
(TFLM) runtime. Due to lack of operator support for reductions and sorting in TFLM, we replace the relevant operators with

https://github.com/geifmany/cifar-vgg
https://github.com/geifmany/cifar-vgg
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supported operations whose compute and memory complexity upperbounds the un-supported operations. Table 7 compares
the performance energy profile of the hybrid model and the baseline when deployed on the micro-controller (STM32F746)
with 320KB SRAM & 1MB Flash. It clearly shows that there is a negligible cost of deploying the proposed routing scheme
and only results in < 2% slowdown.

Table 7. Profiling the on device latency and energy overhead associated with deploying the Hybrid model (MCUNet + router) as
compared to deploying the plain MCUNet model on the MCU.

Model Latency SRAM Energy

MCUNet 0.25368s 156708 bytes 0.1112 joules
Hybrid-MCUNet 0.25951s 158036 bytes 0.1134 joules

A.8. Ablative Experiments

A.8.1. BASE AND GLOBAL ON SAME DEVICE

So far we have focused on a setup where base and global models are deployed on separate hardware. In this experiment, we
deploy the base and global models on the same device. As a result, there is no communication delay in the setup. In such a
setup, we can use a simpler evaluation metric for inference latency, i.e., hybrid MACs, i.e., the amount of multiply-add
operations required to execute the hybrid model. We pick up an architecture family and create a hybrid model using the
smallest and largest architecture. For convenience, we perform this experiment for a known family, namely MobileNetV3
(MBV3) (Howard et al., 2019). From MBV3, we pick the smallest model (48M MACs, 67.6% accuracy) as the base and
largest model (215M MACs, 75.7% accuracy) as global to create the Hybrid-MBV3 model. Figure 4 shows the hybrid
model performance against the intermediate points in the MBV3 space.

(a) MobileNetV3
Figure 4. MBV3: Plot for hybrid MACs vs accuracy.

Figure 4 shows the hybrid model performance against the intermediate points in the MBV3 space as well as entropy
thresholding baseline. These experiments provide evidence for the following properties of hybrid models:

• Hybrid achieves SOTA w.r.t a global model with up to 40% lower latency. Global model in MBV3 achieves 75.7%
accuracy by off-loading every example to the cloud while hybrid model achieves same accuracy by sending only 60%
examples to the cloud. Thus, saving 40% communication cost.

• Training a Hybrid model for intermediate latency is inexpensive. To achieve a single model at any latency, we find an
architecture with this constraint and train it to non-trivial performance. Hybrid model with extreme points trades off
latency for accuracy and save compute for training models for any intermediate constraint.

• Hybrid models dominate entropy thresholding baseline used in dynamic neural networks. Hybrid models outperform
entropy thresholding at every coverage level with up to 1.5% accuracy gains.
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A.8.2. ABSTAINING CLASSIFIER

Hybrid scheme allows the system to operate without a global model. In this case. the result is an abstaining classifier
operating on the device, i.e., it rejects few inputs and provides predictions on the rest. We create abstaining classifiers with
the hybrid setup in the Sec. 3. We show the accuracy of the base model at various coverage levels in the Table 8.

Table 8. Abstaining Classifier with hybrid models from Sec. 3. Results for hybrid models with base at various coverage levels. MASS-600
model achieving ≈ 80% Top1 accuracy is used as global model. Base model belongs to MBV3 space.

Base
MACs

Base
Acc. (%)

Cov.=90%
Acc. (%)

Cov.=80%
Acc. (%)

Cov.=70%
Acc. (%)

Base Hybrid Base Hybrid Base Hybrid

48M 67.6 73.3 71.6 78.6 74.6 83.4 76.8
143M 73.3 79.0 75.9 83.9 77.8 88.4 79.0
215M 75.7 81.3 77.6 86.1 79.0 90.1 79.6

Table 8 shows that the abstaining base achieves significantly better performance than the base at full coverage and outperforms
the abstaining classifier from the entropy thresholding baseline.

A.8.3. ROUTER VALIDATION

We evaluate the performance of the router against the oracle supervision and show that the router learnt using the procedure
described in Sec. 2.1 generalizes well. For instance, while training a hybrid model with pre-trained MBV3-small and
MBV3-large models, on the oracle labels, the router achieves a training accuracy of ≈ 87% and this translates into a
validation accuracy of ≈ 84%. In contrast, entropy thresholding on the validation dataset achieves ≈ 77% accuracy on
the oracle labels.

A.8.4. IMDB EXPERIMENTS

We also learn hybrid model in the NLP domain. We train a sentiment classifier on the IMDb dataset (Maas et al., 2011). We
pick-up off-the-shelf pre-trained classifiers, namely (a) albert-base-v1 (Lan et al., 2019) (11M params, 91% accuracy) as the
base and (b) bert-large (Devlin et al., 2018) (340M params, 96% accuracy) as the global. We use the hidden state from the
last timestep in the sequence along with the classifier logits and entropy as the feature for the routing model. In order to save
computation, we learn the hybrid model by training only the router. Table 9 shows the performance of the hybrid models
and the entropy thresholding baseline at various coverage levels. It shows that hybrid models provide similar benefits on
IMDb dataset.

Table 9. Hybrid models for IMDb at various coverages.

Base
MACs

Base
Acc.(%)

Cov.=97%
Acc. (%)

Cov.=95%
Acc. (%)

Cov.=93%
Acc. (%)

Entropy 91 93.78 94.38 95.25
Hybrid 91 94.31 95.45 96.01

A.8.5. MCUNET EXPERIMENT WITH EFFICIENTNET-B7

In the main text, due to limited compute resources, we restricted our global model to be the MASS-600 (Cai et al., 2020)
model. In this ablation, we explore the effect of deploying a significantly expensive model on the cloud. We choose the best
performing model in the EfficientNet (Tan & Le, 2019) family, i.e., EfficientNet-B7. This model has 37B MACs and stores
66M network parameters. We borrow the implementation from the timm repository 7 that achieves an accuracy of 86.5%
on the Imagenet classification task. In contrast, the MASS-600 model has ≈ 600M MACs, 9.1M parameters and achieves
≈ 80% accuracy. For simplicity, we assume the cloud resources render the inference on EfficientNet-B7 to be similar to

7EfficientNet-B7-ns model from https://github.com/rwightman/pytorch-image-models
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MASS-600. In this experiment, we train a hybrid-r model with MCUNet base used in the Sec. 3. Thus, we can compare the
performance of the hybrid models across different global models. Table 10 compares the accuracies obtained by the hybrid
models with two different global models (MASS-600 and EfficientNet-B7). It clearly shows the following benefits:

• Deploying a better global model improves the hybrid performance and with cloud resources such large models do not
affect the energy consumption on the edge device.

• Assuming that the cloud has access to large compute pool, the inference latency on the edge device does not suffer as well.
• It shows that our algorithm procedure to train hybrid models works across global models in different architecture families.

Table 10. EfficientNet-B7 as Global model: Hybrid models on STM32F746 MCU: Accuracy achieved by different methods at various
latency constraints. Base model is the MCUNet model with 12M MACs and 200ms latency.

Method Accuracy (%) at Latency (ms)

200 600 1000 1400 1600 2000

On-Cloud (MASS-600) - - - - - 79.9
On-Cloud (EfficientNet-B7) - - - - - 86.5

On-Device 51.1 - 60.9 63.5 - -
Hybrid (Global=MASS-600) - 62.3 71.2 77.9 79.5 -

Hybrid (Global=EfficientNet-B7) - 64.9 76.2 82.8 85.7 -


