
A Theoretical View on Sparsely Activated Networks

Cenk Baykal * 1 Nishanth Dikkala * 2 Rina Panigrahy * 2 Cyrus Rashtchian * 1 Xin Wang * 1

Abstract
Deep and wide neural networks successfully fit
very complex functions today, but dense mod-
els are starting to be prohibitively expensive. To
mitigate this, one promising research direction
is networks that activate a sparse subgraph of
the network. The subgraph is chosen by a data-
dependent routing function, enforcing a fixed
mapping of inputs to subnetworks (e.g., the Mix-
ture of Experts (MoE) paradigm). However, there
is little theoretical grounding for these sparsely
activated models. As our first contribution, we
present a formal model of such sparse networks
that captures salient aspects of popular MoE archi-
tectures. Then, we show how to construct sparse
networks that provably match the approximation
power and total size of dense networks on Lips-
chitz functions. The sparse networks use expo-
nentially fewer inference operations than dense
networks, leading to a faster forward pass. This
offers a theoretical insight into why sparse net-
works work well in practice. Finally, we present
empirical findings that support our theory; com-
pared to dense networks, sparse networks give
a favorable trade-off between number of active
units and approximation quality.

1. Introduction
Overparameterized networks yield performance gains as
their sizes increase. This trend has been most prominent
with large transformer-based language models (Brown et al.,
2020; Devlin et al., 2018; Raffel et al., 2019). However,
using large, dense networks makes training/inference expen-
sive, and computing a forward pass may require trillions of
floating point operations (FLOPs). It is an active area of
research to improve the scalability and efficiency without
decreasing the expressiveness/quality of the models.

1AUTHORERR: Missing \icmlaffiliation. 2Google
Research. Correspondence to: Nishanth Dikkala <nishan-
thd@google.com>.

DyNN workshop at the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, 2022. Copyright 2022 by
the author(s).

One way to achieve this goal is to only activate part of the
network at a time. For example, the Mixture of Experts
(MoE) paradigm (Jordan & Jacobs, 1994; Shazeer et al.,
2017) uses a two-step approach. First, each input is mapped
to a certain subnetwork, known as an expert. Then, upon re-
ceiving this input, only this particular subnetwork performs
inference, leading to a smaller number of operations com-
pared to the total number of parameters across all experts.
Switch Transformers (Fedus et al., 2021) successfully use
a refined version of the MoE idea, where the input may be
the embedding of a token or part of a hidden layer’s out-
put. Researchers have investigated many ways to perform
the mapping, such as Scaling Transformers (Jaszczur et al.,
2021) or using pseudo-random hash functions (Roller et al.,
2021). In all cases, the computation of the mapping func-
tion, a.k.a. the ‘routing’ function, takes significantly less
time than the computation across all experts.

The success of these approaches is surprising. A natural
conjecture is that restricting to a subnetwork would reduce
expressive power and quality. However, the guiding wisdom
is that not all parameters of a network are required for the
model to make its prediction for any given example. Our
goal is to analyze the approximation power of sparse models.

Our Results. Our first contribution is a formal model of
networks that have one or more sparsely activated layers
with data-dependent sparsity. We show that our model cap-
tures popular architectures (e.g., Switch and Scaling Trans-
formers) by simulating the sparse layers in these models.

We next prove that sparse models suffice to learn a fairly
large class of functions. One of our main techniques is to use
locality sensitive hashing (LSH) to determine the sparse acti-
vation pattern. LSH maps points in a topological space with
a distance measure (like Rd) to ‘buckets’ such that nearby
points map to same bucket. The total number of buckets
used is the size of the hash table. In Theorem 4.1, we show
that LSH-based sparse models can approximate real-valued
Lipschitz functions in Rd. We assume that our inputs lie
in a k-dimensional manifold within Rd (k < d). To get ε
approximation error, we need an LSH table of size approxi-
mately O((

√
dk/ε)k) but a forward pass only requires time

O(dk log(1/ε)) as only one of theO((
√
dk/ε)k) non-empty

buckets are accessed for any given example.

A Theoretical View on Sparsely Activated Networks

In Theorem 4.2, we complement our upper bounds by prov-
ing a lower bound of Ω((2

√
d/ε)k) on the size needed for

both dense and sparse models (when points live in k dimen-
sions). This lower bound implies that a forward pass on
a dense model takes time Ω(d(2/

√
kε)k), which is expo-

nentially worse than the time taken by the sparse model.
Altogether, we show that for the general class of Lipschitz
functions, sparsely activated layers are as expressive as
dense layers but need to perform significantly fewer floating
point operations (FLOPs) per example. We perform exper-
iments in Section A that investigate the relative power of
various models. By studying scaling behaviors as the model
size grows, we demonstrate models with data-dependent
sparse layers outperform dense models of the same size.

Related Work. Sparsely activated networks have had
enormous empirical success (Artetxe et al., 2021; Du et al.,
2021; Kim & Awadalla, 2020; Nie et al., 2021; Riquelme
et al., 2021; Shazeer et al., 2017; Wang et al., 2021). The
Switch Transformer (Fedus et al., 2021) is one of the
first major, contemporary applications of the sparsely acti-
vated layers. Follow-up works such as Scaling Transform-
ers (Jaszczur et al., 2021) and other hash functions (Roller
et al., 2021) aim to improve the sparse layers. These papers
build upon seminal MoE works (Jacobs, 1995; Jacobs et al.,
1991; Jordan & Jacobs, 1994), and other uses of the MoE
paradigm (Lepikhin et al., 2021; Shazeer et al., 2018). To
the best of our knowledge, there is no systematic theoretical
study of modern sparsely activated networks.

The above work on dynamic sparsity builds on previous
static sparsity efforts, e.g., weight quantization (Li et al.,
2020), dropout (Srivastava et al., 2014), and pruning (see the
survey (Hoefler et al., 2021) and references). Static sparsity
means that the subnetwork activation does not change in
a data-dependent way. The focus is on generalization and
compression, instead of achieving fast inference time with a
huge number of parameters. Our work builds on locality sen-
sitive hashing (LSH), a well-studied technique for approxi-
mate nearest neighbor search (see the survey (Andoni et al.,
2018) or the book (Har-Peled, 2011) and references therein
for LSH background). For uses of LSH in deep learning,
sketch-based memory improves network capacity (Ghazi
et al., 2019; Panigrahy et al., 2021). Other work uses LSH to
improve training time or memory (Chen et al., 2020; 2015;
Rae et al., 2016). Our work differs from the prior studies be-
cause we implement the LSH-based approach with sparsely
activated networks, with the goal of reducing inference time
and achieving low regression error.

2. Preliminaries
Let f : Rd → R be a multivariate real-valued function
that we want to learn with a neural network. We consider

regression, and we aim to minimize the mean-squared error
or the `∞ error. For a function f defined on a set Γ and
an estimator f̂n, we define ‖f − f̂n‖∞ = supx∈Γ |f(x)−
f̂n(x)|. For some results, we approximate f on a subset V ⊆
Rd. For example, V may be the intersection of [−1, 1]d and
a k-dimensional subspace. We also consider the case when
f isL-Lipschitz, meaning that |f(x)−f(x′)| ≤ L·‖x−x′‖2
for all x, x′ ∈ Rd. We define [n] = {1, 2, . . . , n}.

2.1. Data-Dependent Sparse Model

A dense neural network g with a fully connected final layer
can be expressed as g(x) = A · φ(x) where A ∈ R1×t is a
matrix and φ : Rd → Rt is a function (e.g., φ captures the
representation learned up until the final layer). Here, t is the
width of the final layer and d is the input dimensionality.

Our focus is on networks with a sparsely activated final
layer which we call the Data-Dependent Sparse Model
(DSM). Formally, let t be the width, and let s ≤ t be a spar-
sity parameter. Then, we consider functions g of the form
g(x) = Ax ·φ(x) whereAx ∈ R1×t and φ : Rd → Rt. The
crux of the model is the final layer. The sparsity comes from
letting Ax = A ◦mask(x), where mask(x) ∈ {0, 1}1×t is
an s-sparse indicator vector, and “◦” is the entry-wise prod-
uct. The mask zeroes out certain positions, and A contains
the learned weights but no longer depends on x. Intuitively,
the mask is the “routing function” for the sparse activations.
Under the above definitions, let DSM(d, s, t) be the set of
functions g = (A ◦ mask(x)) · φ(x). In what follows, we
use Ax as shorthand for A ◦mask(x).

In the DSM model, we wish to understand the effect of
sparsity on how well the network can approximate certain
functions. Transformers may have multiple sparse layers. To
capture this, we can compose DSM functions. For example,
two sparse layers comes from g(x) = A ◦ mask2(x) ◦
φ2(mask1(x) ◦ φ1(x)). We focus on a single sparse layer
in what follows, which suffices for our main results.

2.2. Hash-based Routing

Prior sparse models compute hash functions of the input vec-
tor x to determine mask and the network activations (Roller
et al., 2021). Our main theorem uses this strategy, consider-
ing LSH families. LSH has the property that nearby points
are more likely to end up in the same hash bucket than far
away points. We can use LSH to define a general class of
efficient regression functions. In Section 3, we prove that
the DSM model captures popular sparse architectures and
the following LSH model.

LSH Model. We review a popular LSH family for the Eu-
clidean distance ((Datar et al., 2004)). Let h1, . . . , hm :
Rd → {−1, 1} be m distinct hash functions. Partition
the space into 2m buckets based on the m sign patterns

A Theoretical View on Sparsely Activated Networks

zx = (h1(x), . . . , hm(x)) over all x ∈ Rd. Then, for each
z ∈ {−1, 1}m, we can specify a function ĝz(x), where the
goal is for gz to approximate the target function f in the part
of space associated with z (i.e., points x that have pattern
z under h1, . . . , hm). More generally, we can allow s sets
of such hash functions (hi1, . . . , h

i
m), and s sets of these ap-

proximation functions (ĝ1
z1 , . . . , ĝ

s
zs) for i = 1, . . . , s. On

input x, we compute the sign patterns z1, . . . , zs and output
g(x) =

∑s
i=1 αiĝ

i
zi(x). Further, we can restrict each ĝiz to

be a degree ∆ ≥ 0 polynomial. For a fixed LSH family
of possible hash functions, we let LSH(d, s,m,∆) denote
this class of functions. In many cases, we only need ĝiz to
be a constant function, i.e., ∆ = 0, and we shorten this as
LSH(d, s,m, 0) := LSH(d, s,m).

Euclidean LSH Model (Datar et al., 2004). This is a pop-
ular LSH family for points in Rd. In this case, each hash
function outputs an integer (instead of ±1 above). Each
bucket in this model is defined by a set of hyperplane in-
equalities. There are two parameters (D, ε). We sample D
random directions a1, . . . , aD ∈ Rd where each coordinate
of each ai is an independent normal variable. In addition
we sample bi ∼ Unif[0, ε] independently for i ∈ [D]. For
a point x ∈ Rd, we compute an index into a bucket via a
function hi : Rd → Z defined as hi(x) =

⌊
a>i x+bi

ε

⌋
. Here,

the index i ranges over i ∈ [D], leading to a vector of D
integers.

3. Simulating Models with DSM
We formally justify the DSM(d, s, t) model by simulating
other models using it. We start with simple examples (in-
terpolation and k nearest neighbor (k-NN) regression), then
move on to transformers and the LSH model. For the
simple examples, we only need one hidden layer, where
φ(x) = σ(Bx) for a matrix B ∈ Rt×d and non-linearity σ.

Interpolation. We show how to compute f at t points
x1, . . . , xt. When s = 1, we can set Ai = f(xi)/〈bi, xi〉,
where bi is the ith row of B. Further, we let mask(xi)
have a one in the ith position and zeroes elsewhere. Then,
g(xi) = (A ◦mask(xi))Bxi = f(xi).

Sparse networks perform k-NN regression. We sketch
how the DSM(d, k, n) model can simulate k-NN with
g(x) = Aσ(Bx). Let the rows of B be a set of n unit
vectors b1, . . . , bn ∈ Rd. For the target function f , let
A = 1

k (f(b1), . . . , f(bn)). Define σ(Bx) to have ones in
the top k largest values in Bx and zeroes elsewhere. For a
unit vector x, these k positions correspond to the k largest
inner products 〈x, bi〉. Since ‖x− bi‖2 = 2− 2〈x, bi〉, the
non-zero positions in σ(Bx) encode the k nearest neighbors
of x in {b1, . . . , bn}. Thus, g(x) computes the average of f
at these k points, which is exactly k-NN regression. More-
over, only k entries ofA are used for any input, since σ(Bx)

is k-sparse; however, computing σ(Bx) takes O(nd) time.
While there is no computational advantage from the sparsity
in this case, the fact that DSM can simulate k-NN indicates
the power of the model.

3.1. Simulating transformer models with DSM

Real-world networks have many hidden layers and multiple
sparse layers. For concreteness, we describe how to simulate
a sparsely activated final layer. As mentioned above, we can
compose functions in the DSM model to simulate multiple
sparse layers.

Switch Transformers (Fedus et al., 2021). The sparse
activations in transformers depend on a routing function R :
Rd → {1, . . . , L}, where R(x) specifies the subnetwork
that is activated (for work on the best choice of R, see
e.g., (Roller et al., 2021)). To put this under the DSM(d, s, t)
model, consider a set of trainable matrices A1, . . . , AL ∈
R1×s, where the total width is t = s · L. On input x,
we think of Ax as a 1 × t matrix with s non-zero entries
equal to AR(x). In other words, A is the concatenation
of A1, . . . , AL, and mask(x) is non-zero on the positions
corresponding to AR(x).

Scaling Transformers (Jaszczur et al., 2021). The key
difference between Switch and Scaling transformers is that
the latter imposes a block structure on the sparsity pattern.
Let t be the width, and let s be the number of blocks (each of
size t′ = t/s). Scaling Transformers use only one activation
in each of the s blocks. In the DSM(d, s, t) model, we
capture this withAx as follows. Let ei ∈ {0, 1}t

′
denote the

standard basis vector (i.e., one-hot encoding of i ∈ [t′]). The
sparsity pattern is specified by indices (i1, . . . , is). Then,
Ax = (α1ei1 , . . . , αbeis) for scalars α1, . . . , αs ∈ R.

3.2. Simulating the LSH model using DSM

We explain how to simulate the LSH model using the DSM
model. The key insight is to view Ax as depending on
the LSH buckets that contain x, where we have s non-zero
weights for the s buckets that contain each input. In the
LSH(d, s,m,∆) model, there are s sets ofm hash functions,
leading to s · 2m hash buckets. We use width t = s · 2m
for the DSM(d, s, t) network. The entries of Ax are in
one-to-one mapping with the buckets, where only s entries
will be non-zero depending on the s buckets that x hashes
to, that is, the values (hi1(x), . . . , him(x)) ∈ {−1, 1}m for
i = 1, 2, . . . , s.

We now determine the values of these s non-zero entries.
We store a degree ∆ polynomial ĝ(x) : Rd → R associ-
ated with each bucket. For our upper bounds, we only need
degree ∆ = 0, but we mention the general case for com-
pleteness. If ∆ = 0, then ĝ is simply a constant α depending
on the bucket. An input x hashes to s buckets, associated

A Theoretical View on Sparsely Activated Networks

with s scalars (α1, . . . , αs). To form Ax, set s entries to
the αi values, with positions corresponding to the buckets.
For degree ∆ ≥ 1, we store coefficients of the polynomials
ĝ, leading to more model parameters. Section 4 contains
details on using LSH to approximate Lipschitz functions
with sparse networks.

Computing and storing the LSH buckets. Determining
the non-zero positions in Ax only requires O(sm) hash
computations, each taking O(d) time with standard LSH
families (e.g., hyperplane LSH). We often take m to be
a large constant. Thus, the total number of operations to
compute a forward pass in the network O(smd) ≈ O(sd).
The variable m above determines the total number of dis-
tinct buckets we will have (2m). For an n point dataset,
m = O(log n) is a realistic setting in theory. Therefore,
2m = poly(n) is often a reasonable size for the hash table.
The hash function typically adds very few parameters. In
summary, the LSH computation does not asymptotically
increase the FLOPs for a forward pass in the network.

4. Data-Dependent Sparse Models are more
Efficient than Dense Models

For a very general class of functions, LSH-based learners
yield similar `∞ error as dense neural networks while mak-
ing inference significantly more efficient. It is a common
belief in the machine learning community that although
many of the datasets we encounter can appear to live in
high-dimensional spaces, there is a low-dimensional mani-
fold on which the inputs lie. To model this, we assume in
our theory that the inputs lie in a k-dimensional subspace (a
linear manifold) of Rd. Here k � d. Theorem 4.1 shows
that the LSH model we propose can learn high-dimensional
Lipschitz functions with a low `∞ error efficiently when
the input comes from a uniform distribution on an unknown
low-dimensional subspace. Theorem C.1 extends this result
to when the input comes from an unknown manifold with a
bounded curvature. We present Theorem 4.1 here and defer
Theorem C.1 to Section C. All proofs are in the appendix.

Theorem 4.1. For any f : [−1, 1]d → R that isL-Lipschitz,
and for an input distribution D that is uniform on a k-
dimensional subspace in [−1, 1]d, an LSH-based learner
can learn f to ε-uniform error using a hash table of size
O(L
√
d
k
/εk) with probability ≥ 0.8. The total time for a

forward pass on a test sample is O(dk log(L
√
d/ε)).

The key idea behind this theorem is to use LSH to produce
a good routing function. The locality of the points hashed to
an LSH bucket lets us control the approximation error. By
using a large number of buckets, we can ensure their volume
is small. Then, outputting a representative value suffices to
locally approximate the target Lipschitz function (since its
value changes slowly).

The above construction assumes knowledge of the dimen-
sionality of the input subspace k. Fortunately, any upper
bound on k would also suffice. The table size of the LSH
model scales exponentially in k but not d. Thus, an LSH-
based learner adapts to the dimensionality of the input sub-
space.

Theorem 4.1 shows that sparsely activated models (using
LSH of a certain table size) are powerful enough to ap-
proximate and learn Lipschitz functions. Next, we show a
complementary nearly matching lower bound on the width
required by dense model to approximate the same class of
functions. We use an information theoretic argument.

Theorem 4.2. Consider the problem of learning L-
Lipschitz functions on [−1, 1]d to `∞ error ε when the in-
puts are sampled from a uniform distribution over an un-
known k-dimensional subspace of Rd ∩ [−1, 1]d. A dense
model of width w with a random bottom layer requires
w = Ω

(
(
√
dL)k

(Cε)k

)
, for a sufficiently large constant C.

Our approach for this theorem is to use a counting argument.
We first bound the number of distinct functions, which is
exponential in the number of parameters (measured in bits).
We then construct a large family of target functions that
are pairwise far apart from each other. Hence, if we learn
the wrong function, we incur a large error. Our function
class must be large enough to represent any possible target
function, and this gives a lower bound on the size of the
approximating network.

Theorem 4.2 shows a large gap in the time complexity of
inference using a dense model and an LSH model. The
inference times taken by a dense model vs. a sparse model
differ exponentially in 1/ε.

Sparse: O (dk log(1/ε)) vs. Dense: Ω

d(2
√
d

Cε

)k
Overall, the above theorems show that LSH-based sparsely
activated networks can approximate Lipschitz functions on
a k-dimensional subspace. The size and sample complexity
match between sparse and dense models, but the sparse
models are exponentially more efficient for inference.

References
Andoni, A., Indyk, P., and Razenshteyn, I. Approximate

nearest neighbor search in high dimensions. In Proceed-
ings of the International Congress of Mathematicians:
Rio de Janeiro 2018, pp. 3287–3318. World Scientific,
2018.

Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M.,
Shleifer, S., Lin, X. V., Du, J., Iyer, S., Pasunuru, R., et al.

A Theoretical View on Sparsely Activated Networks

Efficient large scale language modeling with mixtures of
experts. arXiv preprint arXiv:2112.10684, 2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Chen, B., Liu, Z., Peng, B., Xu, Z., Li, J. L., Dao, T., Song,
Z., Shrivastava, A., and Re, C. Mongoose: A learnable
lsh framework for efficient neural network training. In
International Conference on Learning Representations,
2020.

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen, Y.
Compressing neural networks with the hashing trick. In
International conference on machine learning, pp. 2285–
2294. PMLR, 2015.

Chen, Z. and Dongarra, J. J. Condition numbers of gaussian
random matrices. SIAM Journal on Matrix Analysis and
Applications, 27(3):603–620, 2005.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the twentieth annual sympo-
sium on Computational geometry, pp. 253–262, 2004.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D.,
Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al.
Glam: Efficient scaling of language models with mixture-
of-experts. arXiv preprint arXiv:2112.06905, 2021.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Ghazi, B., Panigrahy, R., and Wang, J. Recursive sketches
for modular deep learning. In International Conference
on Machine Learning, pp. 2211–2220. PMLR, 2019.

Har-Peled, S. Geometric approximation algorithms. Num-
ber 173. American Mathematical Soc., 2011.

Hinton, G. Lecture Notes, Toronto, Hinton, 2012,
http://www.cs.toronto.edu/˜tijmen/
csc321/slides/lecture_slides_lec6.pdf.
URL http://www.cs.toronto.edu/˜tijmen/
csc321/slides/lecture_slides_lec6.pdf.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and
Peste, A. Sparsity in deep learning: Pruning and growth
for efficient inference and training in neural networks.
arXiv preprint arXiv:2102.00554, 2021.

Jacobs, R. A. Methods for combining experts’ probability
assessments. Neural computation, 7(5):867–888, 1995.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural computation,
3(1):79–87, 1991.

Jaszczur, S., Chowdhery, A., Mohiuddin, A., Kaiser, Ł.,
Gajewski, W., Michalewski, H., and Kanerva, J. Sparse
is enough in scaling transformers. Advances in Neural
Information Processing Systems, 34, 2021.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the EM algorithm. Neural computation, 6(2):
181–214, 1994.

Kim, Y. J. and Awadalla, H. H. Fastformers: Highly efficient
transformer models for natural language understanding.
arXiv preprint arXiv:2010.13382, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang,
Y., Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scal-
ing giant models with conditional computation and auto-
matic sharding. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=qrwe7XHTmYb.

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein,
D., and Gonzalez, J. E. Train large, then compress: Re-
thinking model size for efficient training and inference of
transformers. arXiv preprint arXiv:2002.11794, 2020.

Nie, X., Cao, S., Miao, X., Ma, L., Xue, J., Miao, Y.,
Yang, Z., Yang, Z., and Cui, B. Dense-to-sparse gate
for mixture-of-experts. arXiv preprint arXiv:2112.14397,
2021.

Panigrahy, R., Wang, X., and Zaheer, M. Sketch based
memory for neural networks. In International Conference
on Artificial Intelligence and Statistics, pp. 3169–3177.
PMLR, 2021.

Rae, J. W., Hunt, J. J., Harley, T., Danihelka, I., Senior,
A., Wayne, G., Graves, A., and Lillicrap, T. P. Scaling
memory-augmented neural networks with sparse reads
and writes. arXiv preprint arXiv:1610.09027, 2016.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M., Je-
natton, R., Susano Pinto, A., Keysers, D., and Houlsby, N.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb

A Theoretical View on Sparsely Activated Networks

Scaling vision with sparse mixture of experts. Advances
in Neural Information Processing Systems, 34, 2021.

Roller, S., Sukhbaatar, S., Szlam, A., and Weston, J.
Hash layers for large sparse models. arXiv preprint
arXiv:2106.04426, 2021.

Rudelson, M. and Vershynin, R. Smallest singular value of a
random rectangular matrix. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences, 62(12):1707–1739,
2009.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously
large neural networks: The sparsely-gated mixture-of-
experts layer. In ICLR (Poster). OpenReview.net, 2017.
URL http://dblp.uni-trier.de/db/conf/
iclr/iclr2017.html#ShazeerMMDLHD17.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., Sepassi, R., and Hechtman, B. Mesh-tensorflow:
Deep learning for supercomputers. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
3a37abdeefe1dab1b30f7c5c7e581b93-Paper.
pdf.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Valiant, G. and Valiant, P. Estimating the unseen: an n/log
(n)-sample estimator for entropy and support size, shown
optimal via new clts. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pp.
685–694, 2011.

Wang, S., Sun, Y., Xiang, Y., Wu, Z., Ding, S., Gong, W.,
Feng, S., Shang, J., Zhao, Y., Pang, C., et al. Ernie
3.0 titan: Exploring larger-scale knowledge enhanced
pre-training for language understanding and generation.
arXiv preprint arXiv:2112.12731, 2021.

http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#ShazeerMMDLHD17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#ShazeerMMDLHD17
https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf

A Theoretical View on Sparsely Activated Networks

A. Experiments
To empirically verify our theoretical findings, we align our experiments with our proposed models and compare dense
models, data-dependent sparse models (DSM), LSH models, and sparse models with random hash based sparse layers.
While DSM and LSH models are analyzed in the previous section, random hash based layers introduce sparsity with a
random hash function, as an alternative of learnable routing modules and LSH in MoE models (Roller et al., 2021). Our goal
is to show that the DSM and LSH models achieve small MSE while using much fewer activated units than dense models.

A.1. Experimental set-up

Dense, DSM and random hash sparse models contain a random-initialized, non-trainable bottom layer, (a Top-K layer for
DSM and a random hash layer for random hash models to enforce sparsity), and a trainable top layer, with varying number
of hidden units and sparsity levels. LSH models have non-trainable hyperplane coefficients for hashing and a trainable scalar
in each bucket (the scalar determines the output of the network for points in that bucket). We compare dense models and
three sparse models (DSM, LSH, and random).

We evaluate with synthetic data from two random, Lipschitz target functions that are commonly used basis functions for
arbitrary continuous functions. These random functions allow us to empirically evaluate the construction from Theorem 4.1,
while comparing different routing functions.

Random polynomial. p(x) of degree d for x ∈ Rn with sum of coefficient absolute values < 1.

Random hypercube function. f : [−1, 1]n → R which interpolates the indicator functions at each corner with random
{−1, 1} value at each corner. Concretely, the function is defined as follows: for each corner point y ∈ {−1, 1}n, its indicator
function is Iy(x) =

∏n
i=1

1+yixi

2 . Sample random values vy ∈ {−1, 1} with probability (0, 5, 0.5) independently for each
y ∈ {−1, 1}n, the random hypercube polynomial function is f(x) =

∑
y∈{−1,1}n vyIy(x).

Random function generation. For the random polynomial functions, we randomly generate coefficients of the monomials
by sampling from a uniform distribution U([−1, 1]) and scale the coefficients so that their absolute values sum up to 1.0 (this
is to ensure the Lipschitz constant of the generated function is bounded by a constant independent of dimension and degree
of the polynomial). For the random hypercube function, we sample values of the function at each corner independently from
a uniform distribution on −1, 1, and interpolate using the indicator functions.

Train/Test dataset generation. For a given target function f (polynomial or hypercube), we sample independently from
U ([−1, 1]n) (where n is the input dimension) to generate the input features x and compute target value y = f(x). The train
dataset contains 216 (x, y) pairs and the test dataset contains 214 (x, y) pairs.

Training setting. All the models in Section A are trained for 50 epochs using the RMSProp (Hinton) optimizer with a
learning rate of 10−5. For the one dimension example in Section 1, the model is trained for 200 epochs using the RMSProp
optimizer with a learning rate of 5× 10−6.

Random hash sparse model. We discussed the design of DSM and LSH models in Section 2. Here we present the details
of the random hash model, where the sparsity pattern is determined by a random hash of the input data (i.e. the same input
data would always have the same sparsity pattern). The following code snippet shows the generation of a random mask that
only depends on the input data using TensorFlow 2.x.

import tensorflow as tf

seed: a fixed random seed
inputs: the input tensor
mask_dim: size of the masked tensor
num_buckets: a large integer
k: the dimension after masking

input_dim = inputs.shape[-1]
if input_dim != mask_dim:
proj = tf.random.stateless_normal(

shape=(input_dim, mask_dim),

A Theoretical View on Sparsely Activated Networks

seed=seed)
inputs = tf.einsum(

’...i,io->...o’, inputs, proj)
hs = tf.strings.to_hash_bucket_fast(
tf.strings.as_string(inputs),
num_buckets=num_buckets)

top_k_hash = tf.expand_dims(
tf.nn.top_k(hs, k).values[..., -1],
axis=-1)

mask = hs >= top_k_hash

A.2. Learning random polynomials under other parameter settings

We present experiment results for learning random polynomial target functions with low intrinsic dimensions. To be precise,
the target polynomial is p(Ax), where p is a polynomial of degree d with sum of coefficient absolute value < 1, x ∈ Rn,
A ∈ Rk×n is a matrix with random orthogonal rows, and n > k. Note now the intrinsic dimension of the domain is k,
while the inputs x has higher dimension n. In Figure 3, we compare the mean squared loss for dense models and DSMs for
n = 64, k = 8, and d = 4. We observe similar behavior as Figure 1, where the input dimension is the same as the intrinsic
dimension, validating our analysis in Section 3.

We will also present results on a real dataset, CIFAR-10, which corroborates our findings from the synthetic data experiments.

A.3. Results

MSE for random functions. Figures 1 and 2 show the scaling behavior of the DSM and LSH models for a random
polynomial function and hypercube function. Sparsity helps in both DSM and LSH models, both achieving better quality
than dense models using the same number of activated units. In Figure 4, we further compare the DSM and LSH models
with the random hash sparse models, and we see random hash sparse models underperform dense models, suggesting
data-dependent sparsity mechanisms (such as DSM and LSH) are effective ways to utilize sparsity in models.

FLOPs. To further qualtify the efficiency gain of sparse models, we compare the MSE at the same FLOPs for sparse/dense
models in Table 1. The first column is the # FLOPs for the dense model; models in the 3rd and 4th columns use same #
FLOPs but have more parameters (only 50% or 25% active). DSM uses only 18k FLOPs and gets smaller MSE than dense
model with 73k FLOPs.

FLOPs eval MSE (dense) eval MSE (DSM 50% sparsity) eval MSE (DSM 25% sparsity)
18432 0.01015 0.01014 0.009655
36864 0.01009 0.007438 0.005054
73728 0.01046 0.006115 0.001799

Table 1. FLOPs and evaluation Mean Squared Error (eval MSE).

CIFAR-10. We also compare the scaling behavior of DSM and dense models on CIFAR-10 (Krizhevsky et al., 2009). The
baseline model is a CNN with 3 convolutional layers (followed by max-pooling), a dense layer with varying number of
units, and a final dense layer that computes the logits (referred as CNN + dense). For the data-dependent sparse models, we
use the same architecture, except we change the penultimate dense layer with a data-dependent sparse layer (referred as
CNN + DSM). Both models are trained with ADAM optimizer for 50 epochs and evaluated on the test dataset for model
accuracy with no data augmentation; see Figure 5 and Table 2 for the accuracy versus number of activated units. As with the
synthetic datasets, DSMs outperform dense models at the same number of activated units.

A.4. Discussion

Our experimental results (e.g., Figures 1, 2, and 4) show that sparsely activated models can efficiently approximate both
random polynomials and random hypercube functions. Intuitively, the DSM and LSH models employ the sparsity as a way
to partition the space into nearby input points. Then, because the target function is Lipschitz, it is easy to provide to local
approximation tailored to the specific sub-region of input space. On the other hand, the uniform random hash function
performs poorly for these tasks precisely because it does not capture the local smoothness of the target function.

A Theoretical View on Sparsely Activated Networks

16 64 256 1024 4096 16384
Number of activated units (log scale)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Sq

ua
re

d
Er

ro
r

dense (width = x-axis values)
DSM (total width = 1024)
DSM (total width = 2048)
DSM (total width = 4096)
DSM (total width = 8192)

16 64 256 1024 4096 16384
Number of activated units (log scale)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Sq

ua
re

d
Er

ro
r

dense (width = x-axis values)
LSH (# buckets = 1024)
LSH (# buckets = 2048)
LSH (# buckets = 4096)
LSH (# buckets = 8192)

Figure 1. Scaling behavior of DSM and LSH models compared with dense models for a degree 4 random polynomial with input dimension
8: (a) DSM outperforms dense model at the same number of activated units and quality improves as total width increases; (b) LSH model
outperforms dense model when number of buckets is large (≥ 2048) and quality improves as number of buckets increase.

16 64 256 1024 4096 16384
Number of activated units (log scale)

0.00

0.01

0.02

0.03

0.04

M
ea

n
Sq

ua
re

d
Er

ro
r

dense (width = x-axis values)
DSM (total width = 1024)
DSM (total width = 2048)
DSM (total width = 4096)
DSM (total width = 8192)

16 64 256 1024 4096 16384
Number of activated units (log scale)

0.00

0.01

0.02

0.03

0.04
M

ea
n

Sq
ua

re
d

Er
ro

r
dense (width = x-axis values)
LSH (# buckets = 1024)
LSH (# buckets = 2048)
LSH (# buckets = 4096)
LSH (# buckets = 8192)

Figure 2. Scaling behavior of DSM and LSH models compared with dense models for a random hypercube function with input dimension
8. Both DSM and LSH models outperform corresponding dense models with the same number of activated units.

16 64 256 1024 4096 16384
Number of activated units (log scale)

0.00

0.01

0.02

0.03

0.04

M
ea

n
Sq

ua
re

d
Er

ro
r

dense (width = x-axis values)
DSM (total width = 1024)
DSM (total width = 2048)

Figure 3. Scaling behavior of DSM compared with dense models for a random polynomial with low intrinsic dimensional domain. Similar
to Figure 1, DSM outperforms dense models at the same number of activated units.

A Theoretical View on Sparsely Activated Networks

16 64 256 1024 4096 16384
Number of activated units (log scale)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Sq

ua
re

d
Er

ro
r

dense (width = x-axis values)
random hash (total width = 2048)
DSM (total width = 2048)
LSH (# buckets = 2048)

(a) random polynomial

16 64 256 1024 4096 16384
Number of activated units (log scale)

0.00

0.01

0.02

0.03

0.04

M
ea

n
Sq

ua
re

d
Er

ro
r

dense (width = x-axis values)
random hash (total width = 2048)
DSM (total width = 2048)
LSH (# buckets = 2048)

(b) random hypercube function

Figure 4. Scaling behavior of dense, random hash, DSM, and LSH models. DSM and LSH models outperform dense models, while
random hash models underperform dense models with the same number of activated units.

32 64 128 256 512 1024
Number of activated units (log scale)

65

66

67

68

69

70

71

72

Te
st

 a
cc

ur
ac

y

CNN + dense (width = x-axis values)
CNN + DSM (total width = 256)
CNN + DSM (total width = 512)
CNN + DSM (total width = 1024)

Figure 5. Scaling behavior of DSM compared with dense models
on the CIFAR-10 dataset. Similar to Figure 4a, DSM outperforms
dense models at the same number of activated units.

Model \ # activated units 256 512
Dense 69.79 70.79

DSM (50% sparse) 70.74 71.33
DSM (25% sparse) 69.8 71.68

Table 2. CIFAR-10 test accuracy for dense/DSM
models with the same number of activated units.
While not strictly monotonic, wider and sparser mod-
els outperform narrow and dense ones.

On CIFAR-10, we also see that the DSM model performs comparably or better than the dense network. In particular,
Figure 5 shows that the “CNN + DSM” approach with total width 1024 improves upon or matches the dense model. In
this case, the sparse activation allows the network to classify well while using only a fraction of the number of FLOPs. In
Table 2, we see that DSM model outperforms the dense model when we control for the number of activated units in the
comparison.

Limitations. Our experiments focus on small datasets and 2-layer networks as a way to align with our theoretical results.
Prior work on sparsely activated networks has shown success for large-scale NLP and vision tasks. Our experiments
complement previous results and justify the DSM and LSH models by showing their ability to approximate Lipschitz
functions (consistent with our theorems). It would be good to further evaluate the DSM and LSH models for large-scale
tasks, for example, by using them as inspiration for routing functions in MoE vision transformers, such as V-MoE (Riquelme
et al., 2021). It would be interesting to evaluate on larger datasets, such as ImageNet as well. We experimented with a
handful of hyperparameter settings, but a full search may lead to different relative behavior between the models (similarly,
we only evaluated a few parameter settings for the random functions and the synthetic data generation, which is far from
exhaustive).

A Theoretical View on Sparsely Activated Networks

B. Proofs of Main Upper and Lower Bounds
B.1. Proof of the Lipschitz Upper Bound

Proof of Theorem 4.1. We use the Euclidean-LSH construction of Lemma B.1 with parameter ε/L. In any sub-region of
the k-dimensional subspace that has a small diameter, the Lipschitz nature of the function together with Lemma B.1 will
imply that we can approximate it by just a constant and incur only ε error in `∞. In particular, given a point x1 belonging to
an LSH bucket, we can set f̂(x) = f(x1) everywhere in that bucket. For any x2 also mapping to the same bucket, from
Lemma B.1, we have that ‖x1 − x2‖2 ≤ ε/L. Since f is L-Lipschitz,

|f̂(x2)− f(x2)| = |f(x1)− f(x2)| ≤ L‖x1 − x2‖2 ≤ ε. (1)

Next we look at how many samples we need to obtain the guarantee ‖f̂ − f‖∞ ≤ ε. A rare scenario that we have to deal
with for the sake of completeness is when there exist buckets of such small volume that no training data point has mapped
to them and consequently we don’t learn any values in those buckets. At test time, if we encounter this rare scenario of
mapping to a bucket with no value learnt in it, we simply run an approximate nearest neighbor search among the train points.
For our prediction, we use the bucket value associated with the bucket that the approximate nearest neighbor maps to. To
control the error when doing such a procedure, we take enough samples to approximately form an ε/ΓL cover of Γ for a
large enough constant Γ. The size of an ε/ΓL cover of Γ is O((2ΓL

√
d/ε)k). This implies that, via a coupon collector

argument, when the input distribution is uniform over the region Γ, O(k(2ΓL
√
d/ε)k log(2ΓL

√
d/ε)) samples will ensure

that with very high probability, for every test point x there exists a train example xi such that ‖x − xi‖2 ≤ 2ε/ΓL. The
test error is |f(x)− f̂(xi)| ≤ |f(x)− f(xi)|+ |f(xi)− f̂(xi)| = O(ε). Computing the exact nearest neighbor is a slow
process. Instead we can compute the approximate nearest neighbor using LSH very quickly. We lose another O(ε) error
due to this approximation. Choosing Γ appropriately we can make the final error bound exactly ε. This leads to our stated
sample complexity bound.

This implies that ‖f − f̂‖∞ ≤ ε. Hence using an Euclidean LSH with O(k) hyperplanes we can learn an ε-approximation
to f . The time to compute f̂(x) for a new example is the time required to compute the bucket id where it maps to. Since
there are k hyperplanes and our input is d-dimensional, computing the projections of x on the k hyperplanes takes O(dk)
time. Then we need to perform a division by the width parameter ε/L, which would take time equal to the number of bits
requires to represent L/ε. Hence the total time taken would be O(dk log(L/ε)).

The above theorem uses a lemma about Euclidean LSH, which we present next.

Lemma B.1. Consider a Euclidean LSH model in d dimensions with Ck hyperplanes and width parameter ε where C is a
large enough constant. Consider a region Γ defined by the intersection of a k-dimensional subspace with [−1, 1]d. We have
that the LSH model defines a partitioning of Γ into buckets. Let c be a constant. Then, with probability ≥ 0.9,

1. Projecting any bucket of the LSH onto Γ corresponds to a sub-region with diameter ≤ ε/c.

2. At most
(

2
√
d
ε

)O(k)

buckets have a non-empty intersection with Γ.

Proof of Lemma B.1. Let K = Ck. Let the random hyperplanes chosen by the Euclidean LSH be a1, . . . , aK . Let the width
parameter used by the LSH be εLSH . The value of εLSH we choose will be determined later. Since the distribution of entries
is spherically symmetric, the projection of the vectors onto the k-dimensional subspace will also form a Euclidean-LSH
model. Henceforth in our analysis we can assume that all our inputs are projected onto the k-dimensional space Γ and that
we are performing LSH in a k-dimensional space instead of a d-dimensional one. Let A = [a1, . . . , aK]> be the matrix
whose columns are the vectors perpendicular to the hyperplanes chosen by the LSH. Note that A ∈ RK×k. Then we have,
from tail properties of the smallest singular value distribution of Gaussian random matrices (e.g. see (Chen & Dongarra,
2005; Rudelson & Vershynin, 2009)), for a large enough constant c,

Pr[σmin(A) ≥ c
√
k] ≥ 9/10. (2)

For two points x1, x2 ∈ Γ to map to the same LSH bucket, ‖A(x1 − x2)‖∞ ≤ εLSH . This implies that ‖A(x1 − x2)‖2 ≤
εLSH

√
k, which together with (2) implies that ‖x1 − x2‖2 ≤ εLSH/c with probability ≥ 9/10. At the same time, since we

x1, x2 ∈ [−1, 1]d, the maximum distance along any direction is at most the length of any diagonal, which is 2
√
d. Moreover,

along any hyperplane direction sampled by the LSH, we grid using a width εLSH . Since the total number of hyperplanes is

A Theoretical View on Sparsely Activated Networks

Ck the maximum number of LSH buckets possible is
(

2
√
d

εLSH

)O(k)

. We set εLSH = cε. Then, with high probability over
the draw of the hyperplanes, the diameter of any bucket ≤ εLSH/c = ε. The upper bound on the maximum number of LSH
buckets required to cover the region Γ also follows.

B.2. Proof of the Dense Lower Bound

Proof of Theorem 4.2. Assuming B bits per parameter, in our dense layer model we have 2Bw distinct possible configura-
tions. We show a lower bound on the width w by constructing a class of functions F defined on a k-dimensional subspace
within [−1, 1]d such that three properties simultaneously hold:

1. each f ∈ F is L-Lipschitz,

2. the number of functions in F is at least Ω(2(2
√
dL/Cε)k)

3. for f1 6= f2 ∈ F , we have ‖f1 − f2‖∞ > ε.

These three properties together will imply that w ≥ 1
B (̇2
√
d/Cε)k as otherwise by there would have to be two functions

f1 6= f2 ∈ F that are approximated simultaneously by the same dense network, which is impossible since ‖f1 − f2‖∞ > ε.
We construct F as follows. Given the d-dimensional cube [−1, 1]d, we pick a subset of k diagonals of the cube such that
they are linearly independent. We consider the k-dimensional region defined by the intersection of the subspace generated
by these diagonals and the cube [−1, 1]d. Denote the region we obtain by G. Let e1, . . . , ek form an orthonormal basis for
the subspace G lies in. We grid G into k-dimensional cubes of side length 2ε/L aligned along its bases {ei}ki=1. For the
center of every cube we pick a random assignment from {+ε,−ε}. Then we interpolate the function everywhere in G such
that (i) it satisfies the assigned values at the centers of the cubes and (ii) its value decreases linearly to 0 with radial distance
from the center. That is, given the set of cube centers V

f(x) =
∑
v∈V

max(0, f(v)− L sgn(f(v))‖x− v‖2)

To understand the Lipschitz properties of such an interpolation, note that the slope at any given point in G is either 0 or L,
which bounds the Lipschitz constant by L. The total number of cubes that lie within G is at least (

√
dL/Cε)k for some

constant C and hence F contains a total of (2)(
√
dL/Cε)k functions. Moreover, given any f1, f2 ∈ F such that f1 6= f2,

there exists a cube center where their values differ by 2ε giving us the third desired property as well. Consequently, we get
that to attain ε-uniform error successfully on F we need

2Bw ≥ 2(
√
dL/(Cε))k ,

which implies that w = Ω((
√
dL)k/(Cε)k).

C. LSH Models Can Also Learn Lipschitz Functions on k-Manifolds
A k-dimensional manifold (referred to as a k-manifold) can loosely be thought of as a k-dimensional surface living in a
higher dimensional space. For example the surface of a sphere in 3-dimensions is a 2-dimensional manifold. We consider
k-manifolds in Rd that are homeomorphic to a k-dimensional subspace in Rd. We assume that our k-dimensional manifold
Mk is given by a transform f : Rk → Rk applied on k-dimensional subspace of Rd Lk. To control the amount of distortion
that can occur when going from Lk to Mk, the Jacobian of f is assumed to have a constant condition number for all
x ∈ Lk. We now state our main upper bound for manifolds, showing that LSH models can adapt and perform well even
with non-linear manifolds of a bounded distortion from a linear subspace.

Theorem C.1. For any f : [−1, 1]d → R that is 1-Lipschitz, and for an input distribution D, which is uniform on a

k-manifold in [−1, 1]d, an LSH model can learn f to ε-uniform error with O(k
√
dk

k
log(
√
dk/ε)/εk) samples using a

hash table of size O(
√
dk

k
/εk) with probability ≥ 0.8. The total time required for a forward pass on a new test sample is

O(dk log(1/ε)).

Proof. The main idea of the proof is to follow similar arguments from Theorem 4.1 on the subspace Lk and try to bound the
amount of distortion the arguments face when mapped to the manifold Mk. Since we are no longer dealing with a subspace

A Theoretical View on Sparsely Activated Networks

(linear manifold), the argument that an LSH in d-dimensions can be viewed as an equivalent LSH in k-dimensions does not
hold. We use Euclidean-LSH models with O(d) hyperplanes. Furthermore, we will use multiple LSH models each defined
using O(d) hyperplanes. The main challenge in the proof is to show that the total number of buckets used in approximating
f do not grow exponentially in d, which is a possibility now as we use O(d) hyperplanes.

Lemma C.2. For any x ∈ Rd, a d-dimensional sphere of radius O(ε/d) centered at x is fully contained in the bucket where
the center of the sphere maps to with probability ≥ 0.9.

Proof. Along any hyperplane direction the gap between parallel hyperplanes is ε. Since any point is randomly shifted before
being mapped to a bucket we get that with probability 1 − O(1/d), x is more than Ω(1/d) away from each of the two
parallel hyperplanes on either side. So with probability (1−O(1/d))O(d) = Ω(1) the entire sphere is contained inside the
LSH bucket x maps to.

Lemma C.3. Using O(k log d) Euclidean-LSH functions, we get that every x ∈ Lk, there exists a bucket in at least one
of the O(k log d) buckets x gets mapped to such that the entire k-dimensional sphere of radius O(ε/d) centered at x is
contained within the bucket.

Proof. We use a covering number argument. The maximum volume of a k-dimensional subspace within [−1, 1]d is (2
√
d)k.

We cover this entire volume using spheres of radius ε/d. The total number of spheres required to do this are O((2d
√
d)k/εk).

We now do a union bound over all the sphere centers in our cover above. For a single sphere, the probability that it does not
go intact into a bucket in any of the O(k log d) LSH functions is d−Ω(k). By a union bound we can bound the probability
that there exists a sphere center that does not go intact into a bucket to be d−Ω(k). Hence the Lemma statement holds with
exceedingly large probability of 1− dΩ(k).

Now, we only include buckets with volume at least (Ω(ε/(d
√
k)))k. We can do this procedure using approximate support

estimation algorithms (Valiant & Valiant, 2011). This takes time and sample complexity S/ logS where S is the size of
the support. With constant probability all points in Lk are mapped to some such high volume bucket in at least one of the
LSH functions. The total number of buckets with this minimum volume is at most (O((d2

√
k)/ε))k, which is also an upper

bound on the sample complexity and running time of the support estimation procedure. Now, we lift all the above results
when we go to Mk from Lk. Since the Jacobian of the manifold map f has a constant condition number, its determinant is
at most exp(k); so the volume of any region in Lk changes by at most an exp(±O(k)) multiplicative factor when it goes
to Mk. So all volume arguments in the previous proofs hold with multiplicative factors exp(±O(k)). This concludes our
proof.

D. Lower Bound for Analytic Functions
The functions described in the lower bound presented earlier are continuous but not differentiable everywhere as they are
piecewise linear functions. In Theorem D.1 we show that we can make the lower bound stronger by providing a construction
of L-Lipschitz analytic functions (which are differentiable everywhere).

Theorem D.1. A dense model of width w with a random bottom layer requires

w = Ω

(
2k

2/2(LC1)k

(
√
kπε)k

)
,

where C1 is a large enough constant, to learn L-Lipschitz analytic functions on [−1, 1]d to `∞ error ε when the inputs are
sampled uniformly over a unknown k-dimensional subspace of Rd ∩ [−1, 1]d. Moreover, the number of samples required to
learn the above class of functions is

Ω (w logw) ,

where w = Ω

(
2k2/2(LC1)k

(
√
kπε)k

)
.

A Theoretical View on Sparsely Activated Networks

Proof of Theorem D.1. We construct a family F of analytic functions that are L-Lipschitz described using the Fourier basis
functions. Each f ∈ F will be of the form

f(x) =

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nk=0

an1n2...nk
exp

(
iπn>x

)
,

for x ∈ [−1, 1]k. We pick a small value of 0 < ε1 < 1. We assume 1/ε1 is an integer for convenience. If it is not, we
can simply take d1/ε1e instead. For a set of integers (n1, n2, . . . , nk) ∈ [1/ε1]k, let ηn1n2...nk

∈ {±}. We use ηn as a
shorthand when it is not ambiguous. The family F is defined as the set of functions f below

f(x) =

1/ε1∑
n1,...,nk=0

ηnε
α
1

(
exp(iπn>x) + exp(iπn>x)

)
, (3)

where each ηn is chosen to be either ±L/(C
√
kπ) for a large enough constant C and α will be determined later. There are

(1/ε1)k Fourier bases in each f and the coefficient of each is set to be ±Lεα1 /(C
√
kπ). Hence we have

|F| = 2((1/ε1)k). (4)

Next we argue that a larger than 0.9 fraction of the functions in F are L-Lipschitz. We have,

∇f(x) =

1/ε1∑
n1,...,nk=0

ηnε
α
1 iπ(exp(iπn>x)− exp(iπn>x))n

=

1/ε1∑
n1,...,nk=0

−2ηnπ sin(πn>x)εα1n (5)

=⇒ E [∇f(x)] = 0, (6)

where the last expectation is over the uniform measure over functions in F . To get a bound on ‖∇f(x)‖2 we bound each
(∇f(x))i with high probability. Each (∇f(x))i is a sum of (1/ε1)k independent random variables, namely ηn. We saw
above that E[(∇f(x))i] = 0. To bound |(∇f(x))i| with high probability we will use McDiarmid’s inequality. An upper
bound on how much the value of (∇f(x))i can change when any one ηn flips in value is computed as 4ε

(α−1)
1 L/C

√
k.

Then, an application of McDiarmid’s concentration inequality gives us that,

Pr [|(∇f(x))i| > t] ≤ 2 exp

(
−t2kC2ε

(k+2−2α)
1

16L2

)
,

=⇒ |(∇f(x))i| ≤
L

√
kε

(k+2−2α)/2
1

(7)

with probability ≥ 0.9 for a large enough constant C. This implies that

‖∇f(x)‖2 ≤
L

ε
(k+2−2α)/2
1

(8)

with probability ≥ 0.9 for a randomly sampled f ∈ F . Now, let ηf denote the vector of ηn values in sequence for any f .
Using McDiarmid’s (or Hoeffdings) concentration bound again, we also get that, with probability ≥ 0.9, the Hamming
distance between ηf1 and ηf2 for two f randomly sampled from F is at least c(1/ε1)k for a small enough constant c < 1.
This implies that for randomly sampled f1, f2,

f1(x)− f2(x)

=

1/ε1∑
n1,...,nk=0

2η′nε
α
1

(
exp(iπn>x) + exp(iπn>x)

)
, (9)

A Theoretical View on Sparsely Activated Networks

where η′n is non-zero for at least c(1/ε1)k of the terms from the above argument about the Hamming distance. Parseval’s
identity then implies that

1

2k

∫ 1

−1

. . .

∫ 1

−1

(f1(x)− f2(x))2dx1 . . . dxk

≥ 4L2ε2α1 c
1

εk1C
2kπ2

=⇒ ‖f1 − f2‖∞ ≥
2(k/2+1)L

√
cε

(α−k/2)
1

C
√
kπ

. (10)

Finally we note that by union bound, at least a 0.8 fraction of the functions in F satisfy both our Lipschitzness property (8)
and (10) simultaneously. Setting α = k/2 + 1 and ε1 = C

√
kπε

L
√
c2k/2 we get that to achieve a strictly smaller error than 2ε in the

‖.‖∞ sense, one requires a dense model with a width of

Ω

(
2k

2/2

(
LC1√
kπε

)k)
.

E. Conclusion
We provided the first systematic theoretical treatment of modern sparsely activated networks. To do so, we introduced the
DSM model, which captures the sparsity in Mixture of Experts models, such as Switch and Scaling Transformers. We
showed that DSM can simulate popular architectures as well as LSH-based networks. Then, we exhibited new constructions
of sparse networks. Our use of LSH to build these networks offers a theoretical grounding for sparse networks. We
complemented our theory with experiments, showing that sparse networks can approximate various functions.

For future work, it would be interesting to implement LSH-based networks in transformers for language/vision tasks. A
related question is to determine the best way to interpolate in each LSH bucket (e.g., a higher degree polynomial may work
better). Another question is whether a dense model is more powerful than a sparse model with the same number of total
trainable parameters. Theorem 4.1 only says that a sparse model with similar number of parameters as a dense model can
more efficiently (fewer FLOPs) represent Lipschitz functions. This does not say all functions expressible by a dense model
are also expressible by a sparse model. This is non-trivial question as Ax depends on the input (i.e., DSM(d, t, t) may be
more expressive than the dense model with width t). We expect that dense networks can be trained to perform at least as
well as sparse networks, assuming the width is large enough. The dense networks should optimize the weights in the last
layer to approximate the function, but they may not favor certain neurons depending on the input.

