
Does Continual Learning Equally Forget All Parameters?

Haiyan Zhao 1 Tianyi Zhou 2 3 Guodong Long 1 Jing Jiang 1 Chengqi Zhang 1

Abstract
Continual learning (CL) on neural networks
suffers from catastrophic forgetting due to the
distribution or task shift. In this paper, we study
which parts of neural nets are more prone to
forgetting by investigating their training dynamics
during CL. We discover that only a few modules
(e.g., batch-norm, last layer, earlier convolutional
layers) are more task-specific and sensitively
alters between tasks, while others can be shared
across tasks as common knowledge. Hence, we
attribute forgetting mainly to the former and find
that finetuning them on only a small buffer at
the end of any CL method can bring non-trivial
improvement. Due to their few parameters,
such “Forgetting Prioritized Finetuning (FPF)”
is efficient and only requires a small buffer to
retain the previous tasks. We further develop
an even simpler replay-free method that applies
FPF k-times during CL to replace the costly
every-step replay. Surprisingly, this “k-FPF”
performs comparably to FPF and outperforms
the state-of-the-art CL methods but significantly
reduces their computational overhead and cost.
In experiments on several benchmarks of class-
and domain-incremental CL, FPF consistently
improves existing CL methods by a large margin
and k-FPF further excels on the efficiency
without degrading the accuracy.

1. Introduction
Deep learning has achieved unprecedented promising
performance on challenging tasks under the i.i.d. offline set-
ting. However, its reliability and performance degenerates
drastically in the continual learning (CL) where the data
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distribution in training is changing over time, because the
model can quickly adapt to a new task and overwrite the
previously learned weights, which leads to ”catastrophic
forgetting” of previously learned knowledge.

A widely studied strategy to mitigate forgetting is experi-
ence replay (ER) (Riemer et al., 2018), which store a few
data from previous tasks and train the model using both
the current and buffered data. However, they only bring
marginal improvements when the memory is small. In
contrast, multi-task learning (Caruana, 1997) usually adopts
a model architecture composed of a task-agnostic backbone
network and multiple task-specific adaptors on top of it. In
CL, however, we cannot explicitly pre-define and separate
the task-agnostic parts and task-specific parts.

In this paper, we study a fundamental but open problem in
CL, i.e., are most parameters task-specific and sensitively
changing with the distribution shift? In addition, how
many task-specific parameters suffice to achieve promising
performance on new task(s)? Is every-step-replay neces-
sary? To answer the above questions, we conduct extensive
empirical studies of the training dynamics of model
parameters during CL. Over multiple datasets and different
CL methods and scenarios, we consistently observe that
only a few parameters change more drastically than
others between tasks. The results indicate that most
parameters can be shared across tasks and we only need
to finetune a few task-specific parameters to retain the
previous tasks’ performance.

The empirical studies motivate a simple yet effective
method, “forgetting prioritized finetuning (FPF)”, which
finetunes the task-specific parameters using buffered data
at the end of CL methods. Surprisingly, on multiple
datasets, FPF consistently improves several widely-studied
CL methods and substantially outperforms a variety of
baselines. Moreover, we extend FPF to a replay-free CL
method “k-FPF” that saves the cost of time-consuming
every-step replay by replacing such frequent replay with
occasional FPF. k-FPF applies FPF only k times during CL.
We show that a relatively small k suffices to enable k-FPF
achieving comparable performance with that of FPF+SoTA
CL methods and meanwhile significantly reduces the
computational cost. In addition, we explore different groups
of parameters to finetune in FPF and k-FPF by ranking their
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Figure 1. The training dynamics of different group of parameters
which apply ER to train Seq-CIFAR-10. The parameter difference
between the same epochs in two consecutive tasks during CL. Note
the logarithmic scale on the y-axis.
sensitivity to task shift evaluated in the empirical studies.
FPF can significantly improve existing CL methods by
only finetuning batch-norm (BN) and last fully-connected
(FC) layers (≤ 0.127% parameters). k-FPF achieves a
promising trade-off between efficiency and performance
when finetuning BN, FC, and earlier convolutional layers.

2. Problem Setup
Notations We consider the CL setting, where the model is
trained on a sequence of tasks indexed by t ∈ {1, 2, . . . , T}.
During each task t, the training samples (x, y) (with label
y) are drawn from an i.i.d. distribution Dt. Given a neural
network fΘ(·) of L layers with parameter Θ = {θℓ}ℓ=1:L,
θℓ = {θℓ,i}i=1:nℓ

denote all parameters in layer-ℓ where
θℓ,i denotes parameter-i. On each task, fΘ(·) is trained
for N epochs. We denote all parameters and the layer-ℓ’s
parameters at the end of the n-th epoch of task t by Θt

n and
θtℓ,n, n ∈ {1, . . . , N}, respectively.

Settings In this paper, we mainly focus on class-
incremental learning (class-IL) and domain-incremental
learning (domain-IL). In class-IL, Dt are drawn from a
subset of classes Ct and {Ct}Tt=1 for different tasks are
assumed to be disjoint. In domain-IL, tasks to be learnt
remain the same but the input data distribution Dt changes.
The model is expected to adapt to the new domain without
forgetting the old ones. The goal of the class-IL and domain-
IL is: minΘ L(Θ) ≜

∑T
t=1 E(x,y)∼Dt

[l(y, fΘ(x))]. We
conduct class-IL experiments on Seq-OrganAMNIST, Seq-
PathMNIST, Seq-CIFAR-10, and Seq-TinyImageNet. Seq-
OrganAMNIST and Seq-PathMnist are generated by split-
ting OrganAMNIST or PathMNIST from the medical
dataset MedMNIST(Yang et al., 2021). Both datasets con-
sist of 4 disjoint classification tasks. The number of classes
for each task in Seq-OrganAMNIST and Seq-PathMnist

are [3, 3, 3, 2] and [3, 2, 2, 2] respectively. Seq-CIFAR-
10 are generated by splitting the 10 classes in CIFAR-
10(Krizhevsky et al., 2009) into five binary classification
tasks. Seq-TinyImageNet partitions the 200 classes of Tiny-
ImageNet(Le & Yang, 2015) into 10 disjoint classification
tasks with 20 classes per task. We conduct domain-IL exper-
iments on PACS dataset (Li et al., 2017). In the Seq-PACS
dataset for CL, each task only focuses on one domain and the
sequence of tasks follows Sketches → Cartoons → Paintings
→ Photos (increasing the level of realism over time) (Volpi
et al., 2021). We follow the standard network architectures
adopted in most previous CL works. Following (Rebuffi
et al., 2017; Li et al., 2020; Derakhshani et al., 2022), we
train ResNet-18 (He et al., 2016) on all the five datasets.

3. Forgetting Effects on Different Parameters:
An Empirical study

A fundamental and long-lasting question in CL is how
the distribution shift changes the model parameters and
how these changes lead to harmful forgetting. In order
to measure the forgetting effects on parameters between
tasks, we explore two different metrics calculated from the
training dynamics. The experimental results show patterns
of these metrics consistently holding in different settings,
from which we can allocate the task-specific parameters.

3.1. Measuring Forgetting via Training Dynamics

To measure and compare the forgetting effects of different
parameters, we adopt an intuitive metric to compute the
change of parameters and investigate their dynamics over
CL. Since the major changes of parameters are caused by
the task shift, we study a metric that mainly compares the
difference between two consecutive tasks. It computes the
change of parameters between epoch-n in two consecutive
tasks, i.e., (1/|θℓ|)∥θt+1

ℓ,n − θtℓ,n∥1. We report the new
metric computed for running ER on Seq-CIFAR-10 to train
ResNet-18 with buffer size of 500 and N = 5 epochs per
task in Fig. 1. A primary discovery from this plot is: all BN
layers’ mean and variance, the last FC layer, and the earlier
convolutional layers are much more task-specific and sensi-
tive to the task shift. This observation makes intuitive sense
because the bottom convolutional layer and last FC layer are
closest to the inputs and outputs whose distributions change
between tasks, and the mean and variance of BN capture the
first and second order moments of the distribution for the la-
tent representations. Hence, they change sensitively with the
tasks, implying they are a main reason for the catastrophic
forgetting. In addition, it is worth noting that these param-
eters only constitute a small portion of the whole neural net.
Therefore, a few buffered data might suffice for accurate
finetuning on all tasks. This observation is consistent for
different scenarios, and the results are shown in appendix.
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Table 1. Test accuracy (%) of CL baselines, FPF and k-FPF. “-” indicates that the algorithm is not applicable to the setting. For FPF and
k-FPF, we report the best performance among all combinations of parameters in Fig. 3. k-FPF-KD applies an additional knowledge
distillation loss to the finetuning objective of k-FPF-SGD. Bold and Bold gray mark the best and second best accuracy.

BUFFER METHODS
CLASS-IL DOMAIN-IL

SEQ-ORGANAMNIST SEQ-PATHMNIST SEQ-CIFAR-10 SEQ-TINY-IMAGENET SEQ-PACS

JOINT 91.92±0.46 82.47±2.99 81.05±1.67 41.57±0.55 42.96±8.90
SGD 24.19±0.15 23.65±0.07 19.34±0.06 7.10±0.14 31.43±6.39
OEWC (SCHWARZ ET AL., 2018) 22.71±0.67 22.36±1.18 18.48±0.71 6.58±0.12 35.96±4.59

500

GDUMB (PRABHU ET AL., 2020) 73.29±1.82 63.55±5.62 42.18±2.05 3.67±0.25 43.29±2.53
k-FPF+SGD 81.28±0.71 76.72±1.94 64.35±0.87 19.57±0.37 65.90±0.72
k-FPF+KD 85.16±0.67 79.20±3.89 66.43±0.50 20.56±0.32 66.42±2.21
ER (RIEMER ET AL., 2018) 80.45±0.99 57.54±3.05 57.64±4.27 10.09±0.34 52.72±4.01
FPF+ER 84.07±1.26 69.83±2.87 65.47±2.64 18.61±0.70 64.27±1.91

AGEM (CHAUDHRY ET AL., 2018) 24.00±0.18 27.33±3.93 19.47±0.03 7.14±0.10 35.29±4.94
FPF+AGEM 79.86±0.88 73.32±3.73 57.84±1.98 17.35±0.65 62.40±1.89

ICARL (REBUFFI ET AL., 2017) 82.95±0.47 57.67±1.13 62.26±1.09 14.81±0.37 -
FPF+ICARL 84.53±0.37 74.35±4.89 67.75±0.67 17.37±0.35 -

FDR (BENJAMIN ET AL., 2018) 76.62±1.81 40.08±4.13 43.52±1.74 11.33±0.33 48.50±4.67
FPF+FDR 82.32±0.91 75.59±2.64 63.82±0.69 17.94±0.56 65.47±1.13

DER (BUZZEGA ET AL., 2020) 82.52±0.52 66.71±3.40 55.98±3.35 11.54±0.70 47.63±3.85
FPF+DER 85.24±0.55 74.80±3.45 67.52±0.83 17.60±0.50 65.69±1.66

DER++ (BUZZEGA ET AL., 2020) 84.25±0.47 71.09±2.60 67.06±0.31 17.14±0.66 57.77±2.54
FPF+DER++ 85.67±0.23 77.37±1.32 69.09±0.74 20.17±0.35 66.89±1.32

4. Forgetting Prioritized Finetuning (FPF)
Methods

The above empirical study of the parameter training dynam-
ics immediately motivates a simple baselines for CL, i.e.,
“forgetting prioritized finetuning (FPF)”.

FPF to improve CL performance. FPF applies light-
weight finetuning to the most task-specific parameters
using the buffered data before deployment of the CL
model generated by arbitrary CL methods. Hence, it is
complementary to any existing CL methods as a correction
step to remove their biases in the task-specific parameters
by finetuning them on the unbiased buffer data. Thereby,
it can improve the performance of any existing CL methods
without causing notably extra computation.

k-FPF to improve CL efficiency. FPF is a simple tech-
nique that brings non-trivial improvement but it is applied
to an existing CL method. Unfortunately, many SoTA CL
methods require time-consuming replay in every step, which
doubles the total computation. We propose k-FPF that ap-
plies FPF k times during CL. Without the costly experience
replay, k-FPF can still achieve comparable performance
as FPF+SoTA CL methods but spend nearly half of their
computation. Specifically, we can apply k-FPF with any
replay-free algorithms, e.g., SGD, which updates the model
solely on the stream of tasks and their incoming data, and
is usually used as a lower-bound for CL methods. We still
maintain a small buffer by reservoir sampling but SGD does
not access it. We only apply FPF after every τ SGD steps
(in total k times in kτ SGD steps) on the buffer without
knowing the task boundaries.

We propose two variants of k-FPF, i.e., k-FPF-SGD

and k-FPF-KD. k-FPF-SGD uses the cross-entropy
loss to update the parameters during FPF. Inspired by
DER (Buzzega et al., 2020), we further propose k-FPF-KD
that introduces knowledge distillation (KD) (Hinton et al.,
2015) to the FPF objective in k-FPF-SGD. During FPF,
the current model is trained to match the buffered logits
to retain the knowledge of previous models. Compared to
the computation of every-step SGD in CL, the additional
computation by k-FPF-KD is negligible.

5. Experiments
In this section, we applied FPF and k-FPF to multiple
benchmark datasets and compare them with SoTA CL
baselines in terms of test accuracy and efficiency. Besides,
we also compare the performance of finetuning different
parameters in FPF and k-FPF and show that finetuning a
small portion of task-specific parameters suffices to improve
CL. More results and analysis are show in appendix.

Implementation Details. We follow the settings in
(Buzzega et al., 2020) to train various SoTA CL methods
on different datasets. Each task is trained for 5 epochs.
For both FPF and k-FPF, we use the same optimizer, i.e.,
stochastic gradient descent with the cosine-annealing learn-
ing rate schedule, and finetune the selected parameters with
a batchsize of 32 for all scenarios. The finetuning steps for
FPF and k-FPF are 300 and 100 respectively. We perform a
grid-search on the validation set to tune the learning rate and
other hyper-parameters in our experiments.We apply FPF
to several SoTA CL methods listed in Table 1. We report
the test accuracy of these baseline methods and the best test
accuracy of FPF and k-FPF among different combinations
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of task-specific parameters. We take JOINT as the upper
bound for CL which trains all tasks jointly and SGD as the
lower bound which trains tasks sequentially without any
countermeasure to forgetting. All results reported in Table1
are averaged over five trials with different random seeds.

FPF considerably improves the performance of all
memory-based CL methods and achieves SoTA perfor-
mance over all scenarios in class-IL and domain-IL in Ta-
ble 1. For methods with catastrophic forgetting, like AGEM,
the accuracy of FPF increases exponentially. The surge
of performance illustrates that FPF can eliminate bias by
finetuning task-specific parameters to adapt to all seen tasks.

k-FPF-SGD removes the costly every-step replay with
efficient occasional FPF. In Table 1, the performance of
k-FPF-SGD on Seq-PathMNIST, Seq-Tiny-ImageNet and
Seq-PACS are better than the best CL methods and its perfor-
mance on Seq-OrganAMNIST and Seq-Cifar10 are also bet-
ter than most CL methods, which implies that finetuning the
task-specific parameters on a small number of buffer during
SGD can help retain the previous knowledge and mitigate
forgetting, each-step replay is not necessary. In Fig. 2, the
number of training FLOPs and accuracy of different meth-
ods are reported. Compared to the training FLOPs of several
CL methods, the computation cost of FPF and k-FPF-SGD
is almost negligible. The overall training FLOPs of k-FPF-
SGD is still much less than SoTA CL methods while its
performance are better, which show the efficiency of k-FPF.

k-FPF-KD further improves the performance of
k-FPF-SGD to be comparable to FPF. k-FPF-SGD
propose the efficiency of CL methods, but its performance
is a bit worse than that of FPF. Inspired by DER, we
propose k-FPF-KD, which introduce knowledge distillation
to drive the current model to match the output of previous
models on buffer data to retain the knowledge of previous
tasks. The results of k-FPF-KD in Table 1 show that it is
comparable to FPF in most scenarios. In Fig. 2, we can
find that the FLOPs of k-FPF-KD is similar to k-FPF-SGD
and much less than other CL methods and FPF, but in
some cases, it outperforms FPF. k-FPF-KD shows SoTA
performance in both efficiency and accuracy.
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Figure 2. Comparison of FLOPs and accuracy between FPF, k-
FPF and SoTA CL methods. FPF improves all CL methods a lot
without notably extra computation. k-FPF consumes much less
computation but achieves comparable performance as FPF.
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Figure 3. Comparison of FLOPs, number of finetuned parameters,
and accuracy for FPF(Top) and k-FPF(Bottom) finetuning different
combinations of parameters. All FLOPs are normalized together
to (0,1], as well as the number of finetuning parameters. “Basis”
in the x-label refers to “BN+FC+CONV1”. Red stars highlight
the best accuracy and show both FPF and k-FPF only require
to finetune a small portion of task-specific parameters. k-FPF
halves FPF’s FLOPs.

5.1. Comparison of finetuning different parameters in
FPF and k-FPF

FPF and k-FPF get the best performance when only a
small portion of task-specific parameters are finetuned.
In Fig. 3, the accuracy, training FLOPs and number of train-
able parameters during finetuning of applying FPF or k-FPF
to different task-specific parameters are compared. Over
all different scenarios, k-FPF only needs about half FLOPs
of FPF with better performance (indicated by Red Stars).
When finetuning on different task-specific parameters, FPF
get the best performance when BN+FC layers are finetuned,
which is only 0.127% of all parameters (indicated by Orange
Stars). This is consistent with our observations in empirical
studies where BN and FC layers are the most sensitive pa-
rameters to distribution shift. And the results shows that only
finetuning a small portion of task-specific parameters can
mitigate catastrophic forgetting and generalize the model.

The phenomenon for k-FPF is a little different. (1) In the
bottom plot of Fig. 3, when FC layer is fixed for k-FPF,
the performance is much worse. This is because in class-IL
learning, the output classes of tasks change, and the current
output classes may dominate all other classes (Hou et al.,
2019). To prove this, we apply k-FPF to domain-IL like
Seq-PACS, where the output classes for different tasks are
the same. Fig. 6 in Appendix shows that the performance of
finetuning FC only is similar to finetuning other parameters,
which proves our assumptions. (2) As the red star indicates,
a little more parameters (block3 of convolutional layers)
are needed to be finetuned by k-FPF to achieve comparable
accuracy with FPF, which is about 18.91% of all parameters.
Without experience replay during CL method SGD, the
model has a larger bias on current task, so more task-specific
parameters are needed to be finetuned. As shown in the
figure, when block4 of convolutional layers (about 75.22%
of all parameters) are finetuned, which is the least sensitive
parameters shown in our empirical study, the performance of
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k-FPF degrades. This indicates that the bias of task-specific
parameters is the main reason for catastrophic forgetting.

6. Conclusion
We study a fundamental problem in CL, i.e., which parts
of a neural network are task-specific and more prone to
catastrophic forgetting. Extensive empirical studies in
diverse scenarios consistently show that only a small portion
of parameters is task-specific and sensitive. This discovery
leads to a simple yet effective FPF that only finetunes a
subset of these parameters on the buffered data before model
deployment. FPF is complementary to existing CL methods
and can consistently improve their performance. We
further replace the costly every-step replay with k-times of
occasional FPF during CL to improve the efficiency. Such
k-FPF achieves comparable performance as FPF+SoTA CL
while consumes nearly half of its computation.
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Figure 4. The training dynamics of different group of parameters which apply ER to train Seq-CIFAR-10. The parameter difference
between two consecutive epochs during CL. Note the logarithmic scale on the y-axis.

A. Another metric to compute the change of parameters and investigate their dynamics over CL.
This metric calculates the difference between two consecutive epochs, e.g., for parameter θℓ, it computes (1)
(1/|θℓ|)∥θtℓ,n − θtℓ,n−1∥1 between epoch-(n − 1) and epoch-n within a task-t and (2) (1/|θℓ|)∥θt+1

ℓ,1 − θtℓ,N∥1 between
the last epoch of task-t and the first epoch of task-(t + 1). The training dynamics of this metric on different groups of
parameters are shown in the Fig. 4, which is collected by running ER on Seq-CIFAR-10 to train ResNet-18 with buffer
size of 500 and N = 5 epochs per task.

In this plot, we split all parameters into several groups, i.e., the weights and bias of all batch-norm (BN) layers, the mean
and variance of all BN layers, the last fully-connected (FC) layer (closest to the output), the bottom convolutional layer
(closest to the input), and convolutional layers in different blocks. For each group, the mean and standard deviation over
all layers are reported. In the plot, all parameters experience more changes at the epoch of task switching and quickly
converge after a few epochs in the same task. Hence, the dynamic patterns of this metric can be used to detect the task
boundaries. Since tasks differ on their predicted classes in class-IL, the task shift results in the greatest changes on the FC
layer. Moreover, these groups of parameters show different levels of sensitivity to the task shift, indicating that finetuning
on a few task-specific parameters suffices to retain the previous tasks.

B. Forgetting of Different Parameters During CL for Different Scenarios
In the above section, we observe that only a small portion of parameters, i.e., BN mean and variance, last FC layer, and
earlier convolutional layers, are much more sensitive and task-specific than other parameters during CL. However, the
experiment is limited to one dataset, a specified neural network, one CL method, and specified hyper-parameters (e.g.,
buffer size) in class-IL. In the following, we conduct a more extensive study in different scenarios by varying these factors
in class-IL and domain-IL. We will mainly focus on the second metric, which only compute the difference between epochs
in two different tasks. Although the first metric might exhibit other patterns, e.g., the task boundaries, its dynamics are less
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stable than the second one. Surprisingly, we find that the previous observation consistently hold in all the evaluated cases.

Different datasets and architectures for class-IL. We first extend the empirical study to two additional datasets of diverse
types of image data, i.e., Seq-TinyImageNet and Seq-OrganAMNIST, and the results are shown in Fig. 5(a)-(b). Comparing
to Seq-CIFAR-10, they differ on the number of tasks, the dataset size, and the image size and type. We then extend the
empirical study of ER on ResNet-18 to other neural network architectures, e.g., VGG-11-BN and WideResNet162 in
Fig. 5(c)-(d). They differ on the depth, width, total size, and basic cells. Although the ranking of the bottom convolutional
layer and the last FC layer exchanges in some cases, the batch-norm layer, last FC layer, and earlier convolutional layers
are still the most sensitive groups.

Different buffer sizes and CL methods for class-IL. Increasing the buffer sizes can potentially alleviate the forgetting since
it enable replay on more data from previous tasks. Hence, we change the buffer size from 500 to a smaller size 50 or a larger
size 2000 when running ER on Seq-CIFAR10. The training dynamics of different parameters are reported in Fig. 5(e)-(f). We
further extend the empirical study from ER to two other CL algorithms, i.e., SGD without any buffer replay, and DER based
on knowledge distillation of previous models, whose results on Seq-CIFAR10 are reported in Fig. 5(g)-(h). After changing the
buffer size and replay strategies, the ranking order of the sensitivity of different groups of parameters are always consistent.

Different scenarios for domain-IL In domain-IL, the training dynamics of different parameters is in line with our
observations in class-IL and only a small portion of parameters are sensitive and task-specific. That being said, some notable
difference between domain-IL and class-IL can be found through the training dynamics of parameters associated with
different buffer sizes in Fig. 5(i)-(j) and different CL methods in Fig. 5(k)-(l). In class-IL, the last FC layer in most cases is
more sensitive than the bottom convolutional layer to the change of output classes since its update strongly relates to the
outputs. In domain-IL, since the output classes stay the same across tasks and only the input domain changes, the last FC
layer is equally or less sensitive than the bottom convolutional layer.

(a) Seq-Tiny-ImageNet (b) Seq-OrganAMNIST (c) VGG-11-BN (d) WideResNet162

(e) Buffer size 50 (f) Buffer size 2000 (g) DER (h) SGD

(i) Buffer size 50 for Seq-PACS (j) Buffer size 2000 for Seq-PACS (k) DER for Seq-PACS (l) SGD for Seq-PACS

Figure 5. The parameter difference between the same epochs of adjacent tasks during the course of CL for different scenarios. We discuss
different datasets(a, b), different architectures(c,d), different buffer size(e, f) and different CL methods(g,h) for class-IL as well as different
buffer size(i, j) and different CL methods(k,l) for domain-IL. Note the logarithmic scale on the y-axis.
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Table 2. Test accuracy (%) of CL baselines, FPF and k-FPF. “-” indicates that the algorithm is not applicable to the setting. For FPF and
k-FPF, we report the best performance among all combinations of parameters in Fig. 3. k-FPF-KD applies an additional knowledge
distillation loss to the finetuning objective of k-FPF-SGD. Bold and Bold gray mark the best and second best accuracy.

BUFFER METHODS
CLASS-IL DOMAIN-IL

SEQ-ORGANAMNIST SEQ-PATHMNIST SEQ-CIFAR-10 SEQ-TINY-IMAGENET SEQ-PACS

JOINT 91.92±0.46 82.47±2.99 81.05±1.67 41.57±0.55 42.96±8.90
SGD 24.19±0.15 23.65±0.07 19.34±0.06 7.10±0.14 31.43±6.39
OEWC (SCHWARZ ET AL., 2018) 22.71±0.67 22.36±1.18 18.48±0.71 6.58±0.12 35.96±4.59

200

GDUMB (PRABHU ET AL., 2020) 61.78±2.21 46.31±5.64 30.36±2.65 2.43±0.31 34.16±3.45
k-FPF+SGD 75.21±2.03 72.88±3.22 57.97±1.53 13.76±0.72 60.70 ±2.81
k-FPF+KD 80.32±1.16 74.68±4.72 58.50±1.03 14.74±0.94 63.15±1.19

ER (RIEMER ET AL., 2018) 71.69±1.71 51.66±5.86 45.71±1.44 8.15±0.25 51.53±5.10
FPF+ER 77.66±1.93 67.34±2.68 57.68±0.76 13.13±0.63 65.16±1.97
AGEM (CHAUDHRY ET AL., 2018) 24.16±0.17 27.93±4.24 19.29±0.04 7.22±0.15 40.54±3.43
FPF+AGEM 73.76±2.45 67.04±4.51 55.40±1.97 13.24±0.54 57.33±0.76

ICARL (REBUFFI ET AL., 2017) 79.61±0.56 54.35±0.94 59.60±1.06 12.13±0.20 -
FPF+ICARL 80.24±0.70 71.83±1.51 63.95±0.84 17.45±0.38 -

FDR (BENJAMIN ET AL., 2018) 68.29±3.27 44.27±3.20 41.77±4.24 8.81±0.19 45.91±3.54
FPF+FDR 76.92±1.38 70.08±4.06 52.49±2.97 12.25±0.77 58.38±1.70

DER (BUZZEGA ET AL., 2020) 73.28±1.33 54.45±5.92 47.04±3.03 9.89±0.58 46.93±4.94
FPF+DER 79.63±1.21 67.29±3.75 57.25±2.19 12.62±1.08 61.49±1.37

DER++ (BUZZEGA ET AL., 2020) 78.22±2.05 62.00±3.79 59.13±0.81 12.12±0.69 55.75±2.02
FPF+DER++ 80.99±0.91 68.78±2.99 61.98±1.04 13.78±0.57 65.28±1.02

500

GDUMB (PRABHU ET AL., 2020) 73.29±1.82 63.55±5.62 42.18±2.05 3.67±0.25 43.29±2.53
k-FPF+SGD 81.28±0.71 76.72±1.94 64.35±0.87 19.57±0.37 65.90±0.72
k-FPF+KD 85.16±0.67 79.20±3.89 66.43±0.50 20.56±0.32 66.42±2.21
ER (RIEMER ET AL., 2018) 80.45±0.99 57.54±3.05 57.64±4.27 10.09±0.34 52.72±4.01
FPF+ER 84.07±1.26 69.83±2.87 65.47±2.64 18.61±0.70 64.27±1.91

AGEM (CHAUDHRY ET AL., 2018) 24.00±0.18 27.33±3.93 19.47±0.03 7.14±0.10 35.29±4.94
FPF+AGEM 79.86±0.88 73.32±3.73 57.84±1.98 17.35±0.65 62.40±1.89

ICARL (REBUFFI ET AL., 2017) 82.95±0.47 57.67±1.13 62.26±1.09 14.81±0.37 -
FPF+ICARL 84.53±0.37 74.35±4.89 67.75±0.67 17.37±0.35 -

FDR (BENJAMIN ET AL., 2018) 76.62±1.81 40.08±4.13 43.52±1.74 11.33±0.33 48.50±4.67
FPF+FDR 82.32±0.91 75.59±2.64 63.82±0.69 17.94±0.56 65.47±1.13

DER (BUZZEGA ET AL., 2020) 82.52±0.52 66.71±3.40 55.98±3.35 11.54±0.70 47.63±3.85
FPF+DER 85.24±0.55 74.80±3.45 67.52±0.83 17.60±0.50 65.69±1.66

DER++ (BUZZEGA ET AL., 2020) 84.25±0.47 71.09±2.60 67.06±0.31 17.14±0.66 57.77±2.54
FPF+DER++ 85.67±0.23 77.37±1.32 69.09±0.74 20.17±0.35 66.89±1.32

C. Analysis of FPF and k-FPF in Different Scenarios
Different training FLOPs for k-FPF In Fig. 7(a), we show the trade-off between the training FLOPs and accuracy of
applying k-FPF to Seq-PathMNIST. Each point in the figure represent running k-FPF with different k and number of
finetuning steps. τ in the legend refers to the interval of two consecutive finetuning. For experiments with same k, k-FPF
saturates quickly as the increase of number of finetuning steps. This implies that k-FPF can achieve best performance
with low FLOPs and shows its efficiency. From Fig. 7(a), for experiments with small k, e.g. k=2, although the computation
required is very low, performance cannot be further improved. This implies that more finetune times are needed, so the
model can see more previous samples to mitigate forgetting. When the k is large, like k=41 or 121, the accuracy increases
but much more computation are required. In this scenario, as the red star in the plot indicates, apply k-FPF every 1500
training steps can get the best trade-off between computation and accuracy.

D. Performance of finetuning different parameters for FPF and k-FPF on domain-IL dataset
In Figure 6, the performance of finetuning different parameters for FPF and k-FPF on domain-IL dataset Seq-PACS are
reported.

Different buffer sizes and training epochs for FPF The buffer size and the number of training epochs for each task are
always crucial in memory-based CL methods. As shown in plot (b) of Fig. 7, as the buffer size or number of epochs increases,
the performance of ER become better as well. The increase of buffer size brings more benefits. When the buffer size or
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Figure 6. Comparison of FLOPs, number of finetuned parameters, and accuracy for FPF(Top) and k-FPF(Bottom) finetuning different
combinations of parameters. All FLOPs are normalized together to (0,1], as well as the number of finetuning parameters. “Basis” in the
x-label refers to “BN+FC+CONV1”. Red stars highlight the best accuracy and show both FPF and k-FPF only require to finetune a small
portion of task-specific parameters. k-FPF halves FPF’s FLOPs. Different from the results of k-FPF in class-IL, in Seq-PACS, since
the output classes for different tasks are always the same, the last FC layer will not have a large bias on particular classes. Only
finetuning BN or CONV1 layers for k-FPF can get comparable performance with ER. Similar to class-IL, since experience replay is
not allowed during the training of CL method SGD, a little more parameters are required to be finetuned by k-FPF to get comparable
performance with FPF (about 24.92% of all parameters).
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number of epochs become too large, the performance of ER seems saturate and increase slowly. But the increase of accuracy
by applying FPF to different scenarios are still similar, which implies that even if the buffer size or number of epochs is
large, the model still has bias on current task. From the plots, for all scenarios, only finetuning the task-specific BN+FC
layers can alleviate the bias and promote the performance, which is consistent with the observations in empirical studies.

(a) FLOPs-Accuracy in k-FPP (b) Different buffer sizes and training epochs for FPF

Figure 7. (a) Trade-off between FLOPs and accuracy for k-FPF with different k and τ (the SGD steps between two consecutive FPF).
By increasing the finetunine steps per FPF, the accuracy quickly saturates. The best trade-off is highlighted at the top-left corner when
k = 9(τ = 1500). (b) Comparison between ER and FPF+ER finetuning different parameters with different buffer sizes and number of
epochs per task. In all scenarios, FPF can significantly improve ER by only finetuning BN+FC.


