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Abstract
Quantum federated learning (QFL) has recently
received increasing attention, where quantum neu-
ral networks (QNNs) are integrated into feder-
ated learning (FL). In contrast to the existing
static QFL methods, we propose slimmable QFL
(SlimQFL) in this article, which is a dynamic QFL
framework that can cope with time-varying com-
munication channels and computing energy lim-
itations. This is made viable by leveraging the
unique nature of a QNN where its angle parame-
ters and pole parameters can be separately trained
and dynamically exploited. Simulation results cor-
roborate that SlimQFL achieves higher classifica-
tion accuracy than Vanilla QFL, particularly under
poor channel conditions on average.

1. Introduction
Recent advances in noisy intermediate-scale quantum
(NISQ) computing processors (Arute et al., 2019) and ma-
chine learning (ML) algorithms (Burkart & Huber, 2021)
appear to be a prelude to the era of quantum ML (QML)
(Schuld & Killoran, 2022). Just like the neural network
(NN) of classical ML, QML is implemented by a quantum
neural network (QNN) in which a parameterized quantum
circuit (PQC) adjusts the input quantum qubit states, and
the expected measurement determines the output for a given
basis (Bharti et al., 2022). With fewer parameters, QML has
achieved the level of performance comparable to classical
ML in classification (Schuld, 2021; Havlı́ček et al., 2019),
data generation (Zoufal et al., 2019), and reinforcement
learning tasks (Jerbi et al., 2021). Meanwhile, by combining
federated learning (FL) (Chen & Yoo, 2021; Huang et al.,
2022) with QML, quantum FL (QFL) has shown its po-
tential in utilizing distributed data and quantum computing
resources (Chehimi & Saad, 2022).
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Figure 1: A schematic illustration of SlimQFL (left) wherein the pole and angle
parameters of local QSNN models can be separately trained and dynamically com-
municated, in contrast to Vanilla QFL (right) based on QNNs wherein only angle
parameters are trainable.

While interesting, the current QFL, hereafter referred to as
Vanilla QFL, is nothing more than iteratively averaging the
PQC parameters. Therefore, it is difficult to cope with envi-
ronmental dynamics such as time-varying communication
channel conditions and energy limitations (Matsubara et al.,
2022). To overcome this limitation, we propose a novel dy-
namic QFL framework, coined slimmable QFL (SlimQFL),
inspired by the resemblance between the slimmable NN
(SNN) architecture (Baek et al., 2022) and a dyadic nature
of the QNN architecture as elaborated next.

The SNN of classical ML is a dynamic architecture in the
sense that not only can the entire parameters be trained, but
also a fraction of the parameters can be separately trained
and exploited. Slimmable FL (SlimFL) utilizes such SNNs
as the local models of devices, thereby responding to the
time-varying energy and communication channel conditions
(Yun et al., 2022). Similarly, a QNN can be viewed as two
sets of separately tunable parameters: angle parameters of
the PQC and pole parameters of the measurement basis.
While existing QNN architectures and training algorithms
focus only on the angle parameters (Chen & Yoo, 2021), we
propose a quantum SNN (QSNN) wherein both angle and
pole parameters can be separately trainable for SlimQFL.

Consequently, during the local training of SlimQFL, each
device first trains the pole parameters of its local QSNN,
followed by the angle parameters, henceforth referred to
as pole training and angle training, respectively. Then, de-
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pending on the channel condition during a communication
round, each device transmits either the both angle and pole
parameters or only the pole parameters (7x smaller in our ex-
periments). A server produces the averaged local QSNNs as
a global QSNN that is downloaded by each device. Numeri-
cal experiments corroborate that SlimQFL achieves 11.7%
higher accuracy than Vanilla QFL in MNIST classification,
thanks to its successful reception of at least pole parame-
ters even under poor channel conditions. We additionally
validate that pole training without angle training can indeed
improve accuracy, demonstrating the potential of QSNN as
a dynamic QNN architecture.

2. Preliminaries: From Quantum Machine
Learning to Quantum Federated Learning

Basic Quantum Gates. A qubit is a quantum computing
unit where the quantum state is represented with two basis
|0⟩, |1⟩ in Bloch sphere (Bouwmeester & Zeilinger, 2000).
The quantum state is written as |ψ⟩ = α|0⟩+ β|1⟩, where
α2 + β2 = 1. Suppose there is a single qubit system, a
classical data δ is encoded to quantum state with the rotation
gates Rx(δ), Ry(δ), and Rz(δ), where Rx(δ), Ry(δ), and
Rz(δ) represent the rotation of δ over x-, y-, and z-axes
in Bloch sphere, respectively. In a multiple qubit system,
qubits can be entangled with controlled-NOT (CNOT) gates.
These basic quantum gates configure the QNNs.

QNN based QML. As shown in Fig. 1(right), the struc-
ture of a QNN is tripartite: the state encoder, PQC, and the
measurement layer (Killoran et al., 2019). In the forward
propagation, classical input data x needs to be first encoded
with the state encoder via basic rotation gates, which is a
unitary operation and denoted as U(x). Then, the encoded
quantum state is processed through the PQC U(ϕ), a multi-
layered set of CNOT gates and rotation gates associated
with trainable parameters ϕ. The output of the PQC is the
entangled quantum state that can be measured after apply-
ing a projection matrix P onto the reference z-axis. The
measured output ⟨O⟩x,ϕ ∈ [−1, 1]|y| is called an observ-
able, where |y| denotes the output dimension. Given the
observable and the ground-truth of input, the loss L(ϕ) is
calculated. Subsequently, the QNN is trained accordingly
using the stochastic gradient descent algorithm:

ϕ̃← ϕ− η∇ϕL(ϕ) (1)

where η is the learning rate, and the gradient∇ϕL(ϕ) is cal-
culated using the parameter shift rule (Mitarai et al., 2018).

Vanilla QFL. FedAvg is the standard algorithm in FL with
classical NNs (McMahan et al., 2017). In each communica-
tion round, the operations of FedAvg can be summarized
by: (i) each device’s local training of an NN; (ii) the param-
eter server’s construction of a global NN by averaging the
local NNs; and (iii) each device’s replacement of its local

Algorithm 1: Pole-to-Angle Local-QSNN Train
1 Notation.D: local trainset, xi: data of i-th batch, yi: label of i-th batch,

ηl: learning rate in l-th iterations.;
2 Initialization. local-QNN parameters, ϕ, θ;
3 for l = {1, 2, . . . , L} do
4 for (xi, yi) ∈ D do
5 ŷi ← QSNN(xi;ϕ, θ) // ŷi: logits;
6 Calculate loss, L(ϕ, θ, (xi, yi));
7 Update pole, θ ← θ − ηl∇θL(ϕ, θ, (xi, yi));

8 θ̃ ← θ ;
9 for l = {1, 2, . . . , L} do

10 for (xi, yi) ∈ D do
11 ŷi ← QSNN(xi;ϕ, θ);
12 Calculate loss, L(ϕ, θ, (xi, yi));
13 Update angle,ϕ← ϕ− ηl∇ϕL(ϕ, θ̃, (xi, yi));

14 ϕ̃← ϕ;

NN with the global NN. In Vanilla QFL, (i) is implemented
using (1), and the global QNN ϕ̃G in (ii) is given by the
averaged PQC angle parameter, i.e.,

ϕ̃G ← 1∑N
n=1 cn

N∑
n=1

cn · ϕ̃n, (2)

where ϕ̃n is the n-th device’s local NN, and cn ∈ {0, 1}
is an indicator function returning 1 if the n-th device con-
tributes to the global model aggregation. This principle is
applied for a privacy-preserving application (Li et al., 2021),
binary classification (Chen & Yoo, 2021; Huang et al., 2022),
and image classification tasks (Chen & Yoo, 2021).

3. Slimmable Quantum Federated Learning
Departing from Vanilla QFL based on QNNs, we aim to
make QFL that can cope with dynamic environments such
as time-varying communication channels and energy limita-
tions. To this end, we propose a novel QSNN architecture,
and develop SlimQFL involving local QSNN training and
global QSNN aggregation operations, as elaborated next.

QSNN Architecture. In a QNN, its feature map is trained by
adjusting the PQC angle parameters (Havlı́ček et al., 2019),
and the corresponding qubit states can be represented on the
Bloch sphere, as illustrated in Fig. 1(left). Meanwhile, the
QNN output is given by the measured qubit states projected
onto a hyperplane for a given basis pole of the Bloch sphere.
While the standard QML focuses only on tuning the PQC
angle parameters, Schuld & Killoran (2022) shows that it
is possible to adjust the hyperplane by changing the pole
of the measurement. Inspired by this, we propose a QSNN
where not only can the PQC angle parameters ϕ be trained
but also the measurement pole parameters θ can be trained.
Therefore, the projection matrix Pθ of QSNN is trainable in
comparison to the fixed projection matrix P in QNN.

Pole-to-Angle Local Training. Like Vanilla QFL associ-
ated with local QNNs, each device under SlimQFL stores a
local QSNN that is trained using its own local dataset. The
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Algorithm 2: SlimQFL
1 Notation. θ̃n, ϕ̃n: n-th device’s pole/angle parameters, θ̃G, ϕ̃G:

pole/angle parameters of server-side QSNN;
2 Initialization. ∀cnθ , c

n
ϕ ← 0;

3 for n = {1, . . . , N} do
4 Sample χn ∼ exp(1);
5 if Rn ≥ uwhole

th then
6 Transmit pole/angle parameters, (θ̃n, ϕ̃n);
7 cnθ , c

n
ϕ ← 1 ;

8 else if Rn ≥ upole
th then

9 Transmit angle parameters, θ̃n;
10 cnθ ← 1;

11 if
∑N

n=1 cnθ ̸= 0 and
∑N

n=1 cnϕ ̸= 0 then
12 Update with (4);

new key element is that SlimQFL trains the angle and pole
parameters of QSNN separately in a sequential way. Since
the number of pole parameters is commonly smaller than
that of angle parameters, we first train the pole parameters θ,
then train the angle parameters ϕ. After L local iterations,
the local QSNN [θ̃n; ϕ̃n] of the n-th device is updated as:[

θ̃n

ϕ̃n

]
←

[
θn

ϕn

]
− ηt

[∑L
l=1∇θn

l
L(ϕn,θn

l )∑L
l=1∇ϕn

l
L(ϕn

l , θ̃
n)

]
, (3)

where ηt denotes the learning rate at time t.

Dynamic Global Model Aggregation. By leveraging the
QSNN architecture, at each communication round, the n-th
device uploads either: (i) only the pole parameters θ̃n or (ii)
both the pole and angle parameters [θ̃n; ϕ̃n], depending on
its communication channel condition, energy availability,
and/or other time-varying environmental factors. The param-
eter server aggregates the uploaded parameters accordingly
and constructs a global QSNN [θ̃G; ϕ̃G]:

[
θ̃G

ϕ̃G

]
←

 1∑N
n=1 cnθ

∑N
n=1 c

n
θ θ̃

n

1∑N
n=1 cnϕ

∑N
n=1 c

n
ϕϕ̃

n

 , (4)

where the indicator functions cnθ and cnϕ count pole and
angle uploading events respectively. Finally, each device
downloads the global QSNN [θ̃G; ϕ̃G], and iterates the op-
erations mentioned above until convergence, as summarized
in Algorithm 2.

4. Numerical Experiments
4.1. Simulation Settings

To show the effectiveness of SlimQFL with both pole train-
ing and angle training of QSNNs, we consider the following
baselines: SlimQFL-Pole with only pole training of QSNNs,
Vanilla QFL with QNNs (Chehimi & Saad, 2022), and Clas-
sical FL with classical NNs (McMahan et al., 2017). For
a fair comparison, we consider that QSNNs, QNNs, and
classical NNs have almost the same number of trainable
parameters. The performance is measured using the top-1

Description Value

Number of devices (N ) {2,5,10,20}
Number of local iterations per epoch (L) {2,5,10,20}
Epoch (E) 200
Optimizer SGD
Learning rate (η0), Decaying rate 0.01, 0.001
Observable hyperparameter (w) 1.6
Number of qubits 4
Number of parameters in SlimQFL & Vanilla QFL 40
Number of parameters in SlimQFL-Pole 4
Number of parameters in Classical FL 56
Number of data per device 64
Batch size (B) {4, 8, 16, 32}
Test batch size 128
Noise (σ2) {−20,−30,−40} dB

Table 1: List of simulation parameters.

accuracy in an MNIST classification task. Since quantum
computing suffers from the lack of input qubits, we consider
a mini-version of the MNIST (mini-MNIST) task, where the
images are interpolated into 7x smaller sizes via inter-area
interpolation. Compared to MNIST, mini-MNIST consists
of 4 labels (i.e., {0, 1, 2, 3}). We conduct all experiments on
mini-MNIST with independent and identically distributed
(IID) data. Other important simulation parameters are sum-
marized in Table 1. The bold-faced parameters imply the
values used for Fig. 2–Fig. 4.

To showcase the dynamic characteristics of SlimQFL, we
consider time-varying channel conditions in the uplink
communications from each device to the server, while the
downlink communications are assumed to be perfect. In
the uplink, the throughput Rn of the n-th device is given
as Rn = log2(1 + gn/σ2) (bits/sec), where σ2 is a con-
stant noise power and gn ∼ exp(1) is a random gain under
Rayleigh fading (Tse & Viswanath, 2005). When the trans-
mitter encodes an input with a code rate u, its receiver suc-
cessfully obtains the encoded data if R > u. Then, we con-
sider the standard opportunistic transmission by assuming
the channel condition is known at the transmitter. Namely,
in a good channel condition, the device transmits both pole
and angle parameters [θ̃n; ϕ̃n] to the server, while in a poor
channel condition, the device transmits only pole parame-
ters θ̃n. Consequently, the server constructs a global QSNN
by aggregating the receptions, while counting the pole and
angle parameter receptions using cnθ = 1(Rn ≥ upole

th ) and
cnϕ = 1(Rn ≥ uwhole

th ), respectively.

4.2. Results

Effectiveness of QSNN. As mentioned above, the proposed
scheme changes the parameters being transmitted according
to the channel conditions. To examine the robustness of
SlimQFL in various channel conditions, we consider three
different conditions (i.e., good, moderate, and poor). The
proposed scheme is expected to produce high accuracy with
good channel condition and maintains that result even as
the channel condition deteriorates, thanks to the advantage
of transmission opportunity. Our prediction is verified in



Slimmable Quantum Federated Learning

0 50 100 150 200

Epoch

0

20

40

60

80

100

T
o
p
-1

 A
c
c
u
ra

c
y

SlimQFL

SlimQFL-Pole

Vanilla QFL

Classical FL

Figure 2: Good channel (σ2 = −40dB).
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Figure 3: Moderate channel (σ2 = −30dB).
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Figure 4: Poor channel (σ2 = −20dB).
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Figure 5: Number of devices.
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Figure 6: Number of local iterations.

0 50 100 150 200

Epoch

0

20

40

60

80

100

T
o
p
-1

 A
c
c
u
ra

c
y

B = 4

B = 8

B = 16

B = 32

Figure 7: Batch size.

Fig. 2–4 where we confirm that in good channel conditions,
all four schemes yield high accuracy. Despite SlimQFL-
Pole having small parameters and low performance, its
learning curve shows that SlimQFL-Pole is trained. How-
ever, as the channel condition deteriorates, the performance
degradation of Vanilla QFL and Classical FL is observed
while SlimQFL-Pole and Proposed maintain similar lev-
els of accuracy. Among them, Proposed shows the highest
accuracy. Therefore, we conclude that our proposed scheme
is superior to the other algorithms.

Effectiveness of Quantum Computing. The efficacy
of quantum computing is compared with four different
schemes. FL using QNNs (i.e., Proposed, Vanilla QFL) is
predicted to show superior performance to its competitors
due to the utilization of quantum computing. This is proven
true by the results of Fig. 2 which shows the accuracy results
of each algorithm in a good channel condition. Proposed
and Vanilla QFL outperforms Classical FL in terms of
top-1 accuracy. However, SlimQFL-Pole shows low perfor-
mance because it consists of only pole parameters. Thus, we
conclude that FL utilizing QNNs has outperformed the clas-
sical FL in terms of top-1 accuracy level due to the property
of quantum computing.

Number of Devices. The number of devices, N , affects the
model’s performance. According to (Li et al., 2020), the
more participating devices, the higher the performance of
the model. In Fig. 5, we see that SlimQFL with 20 devices
shows significantly improved results compared to the other
baselines which verify the statement above.

Number of Local Iterations. Similarly, the number of lo-
cal iterations, L, has a notable impact on the performance.
According to (Li et al., 2020), FedAvg shows a higher

performance when the number of local iterations is small
but when the number of local iterations exceeds a certain
threshold, the performance declines (e.g., 20 (Wang et al.,
2020)). It is possible that this trend may not apply to our
paper because of QSNN. Fig. 6 corroborates that the larger
number of local iterations, the top-1 accuracy also increases.
Our results matched the research trends in FL.

Batch Size. We investigate the impact of the batch size
used for training by carrying out simulations using 4, 8, 16,
and 32 as batch sizes. Fig. 7 shows the simulation results.
The results in the figure show that the simulation with a
batch size of 8 produces the highest accuracy while the
simulation with a batch size of 16 has the lowest accuracy.
By observing the accuracy of the other two simulations, it
is deduced that there is no coherent relationship between
model performance and the batch size used in training.

5. Conclusion
In this paper, we propose SlimQFL, a novel QFL framework
with QSNN and a training algorithm to achieve adaptability
to a dynamic communication environment. The numerical
results corroborate that SlimQFL is robust to poor chan-
nel conditions compared to QFL or classical FL. Further-
more, we verify that there is a certain advantage in utilizing
quantum computing. Based on these remarkable results, it
could be an interesting topic to analyze the convergence of
SlimQFL under various communication channel conditions
as well as global data distributions that would be non-IID.
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